解释void linewalkingcontrol(void) { GetLineWalking (&L1,&L2,&R1,&R2); if(L2==1 && L1==1 && R1==1 && R2==1) { ucBluetoothValue = BST_fBluetoothDirectionL =0; BST_fBluetoothDirectionR = 0; BST_fBluetoothDirectionSL =0; BST_fBluetoothDirectionSR = 0; } else if (L2==1 && L1==0 && R1==0 && R2==1) { ucBluetoothValue = BST_fCarSpeed_P+=5;//Ç°½ø } else if (L2==1 && L1==1 && R1==0 && R2==0) { ucBluetoothValue = BST_fCarSpeed_I+=0.05; //×óת } else if (L2==0 && L1==0 && R1==1 && R2==1) { ucBluetoothValue = BST_fCarSpeed_I-=0.05; //ÓÒת } else if (L2==1 && L1==1 && R1==1 && R2==0) { ucBluetoothValue = BST_fBluetoothDirectionSR = 1;//×óÐý } else if (L2==0 && L1==1 && R1==1 && R2==1) { ucBluetoothValue = BST_fBluetoothDirectionSL = 1;//ÓÒÐý } }

时间: 2023-06-08 21:07:45 浏览: 52
这是一段C语言程序代码,其中包含函数linewalkingcontrol,函数的作用是控制一条行走的线路。在函数内部,调用了GetLineWalking函数,该函数可能是获取行走线路的一些参数或控制行走的方向。具体实现需要查看GetLineWalking函数的具体实现。
相关问题

解释void linewalkingcontrol(void) { if(L2==1 && L1==1 && R1==1 && R2==1) { ucBluetoothValue = BST_fBluetoothDirectionL =0; BST_fBluetoothDirectionR = 0; BST_fBluetoothDirectionSL =0; BST_fBluetoothDirectionSR = 0; } else if (L2==1 && L1==0 && R1==0 && R2==1) { ucBluetoothValue = BST_fCarSpeed_P+=5;//Ç°½ø } else if (L2==1 && L1==1 && R1==0 && R2==0) { ucBluetoothValue = BST_fCarSpeed_I+=0.05; //×óת } else if (L2==0 && L1==0 && R1==1 && R2==1) { ucBluetoothValue = BST_fCarSpeed_I-=0.05; //ÓÒת } else if (L2==1 && L1==1 && R1==1 && R2==0) { ucBluetoothValue = BST_fBluetoothDirectionSR = 1;//×óÐý } else if (L2==0 && L1==1 && R1==1 && R2==1) { ucBluetoothValue = BST_fBluetoothDirectionSL = 1;//ÓÒÐý } }

这是一个C语言函数。该函数的名称为linewalkingcontrol,返回类型为void,即没有返回值。函数内部通过if语句判断L2是否等于1,如果是,则执行if语句块中的代码,如果不是,则不执行。该函数的其他实现细节需要根据具体情况进行分析。

void mergeSort(int* nums, int begin, int end) { if (begin >= end) { return; } int len = end - begin+1; int mid = begin + (end - begin) / 2; mergeSort(nums, begin, mid); mergeSort(nums, mid+1, end); int* temp = new int[len]; temp = { 0 }; int l1 = begin, r1 = mid; int l2 = mid+1, r2 = end; int i = begin; for (; l1 <= r1 && l2 <= r2;) { if (nums[l1] < nums[l2]) { temp[i++] = nums[l1++]; } else { temp[i++] = nums[l2++]; } } for (; l1 <= r1;) { temp[i++] = nums[l1++]; } for (; l2 <= r2;) { temp[i++] = nums[l2++]; } for (int j = 0; j < len; j++) { nums[j+begin] = temp[j]; } } 出现读取访问冲突,修改代码

在代码中,`temp`被赋值为一个新的`int`数组,然后又被赋值为`{0}`,这样会导致`temp`指向了一个新的内存地址,原有的内存地址被泄漏。在后续的代码中,程序又对这个新的内存地址进行了读写操作,从而导致了读取访问冲突。为了解决这个问题,应该在申请`int`数组的同时,将数组中的元素全部初始化为0。修改后的代码如下: ``` void mergeSort(int* nums, int begin, int end) { if (begin >= end) { return; } int len = end - begin+1; int mid = begin + (end - begin) / 2; mergeSort(nums, begin, mid); mergeSort(nums, mid+1, end); int* temp = new int[len](); // 将数组中的元素全部初始化为0 int l1 = begin, r1 = mid; int l2 = mid+1, r2 = end; int i = begin; for (; l1 <= r1 && l2 <= r2;) { if (nums[l1] < nums[l2]) { temp[i++] = nums[l1++]; } else { temp[i++] = nums[l2++]; } } for (; l1 <= r1;) { temp[i++] = nums[l1++]; } for (; l2 <= r2;) { temp[i++] = nums[l2++]; } for (int j = 0; j < len; j++) { nums[j+begin] = temp[j]; } delete[] temp; // 释放动态申请的内存空间 } ```

相关推荐

void InitPolylist(Polylist *L) {*L = (Polylist)malloc(sizeof(Polylist)); (*L)->next = NULL; } Polylist CreatePolylist()/*输入多项式的系数和指数,用尾插法建立一元多项式的链表*/ {Polylist L; Polynode *s; InitPolylist(&L); double coef; int exp; Polynode *r = L; scanf("%lf %d",&coef,&exp); while(coef != 0) { s = (Polynode *)malloc(sizeof(Polynode)); s->coef = coef; s->exp = exp; s->next = NULL; r->next = s; r = s; scanf("%lf %d",&coef,&exp); } r->next = NULL; return L; } int LengthPolylist(Polylist L) {Polylist r = L; int n = 0; while(r->next != NULL) { n++; r = r->next; } return n; } void OutputPolylist(Polylist L) { Polylist r = L->next; printf("inlcude %d coef/exp list is:\n",LengthPolylist(L)); while(r != NULL) { printf("%.2f,%d\n",r->coef,r->exp); r = r->next; } } Polylist AddPolylist()/*创建两个多项式并相加,完成后显示序列*/ {Polylist l1 = CreatePolylist(); Polylist l2 = CreatePolylist(); Polylist l3; InitPolylist(&l3); Polynode *s; Polylist r1 = l1->next, r2 = l2->next, r3 = l3; double sum; while(r1 != NULL && r2 != NULL) { s = (Polynode *)malloc(sizeof(Polynode)); if(r1->exp < r2->exp) { s->coef = r1->coef; s->exp = r1->exp; r3->next = s; r3 = s; r1 = r1->next; } else if (r1->exp == r2->exp) { sum = r1->coef + r2->coef; if(sum != 0) { s->coef = sum; s->exp = r1->exp; r3->next = s; r3 = s; r1 = r1->next; r2 = r2->next; } else { return l3; } } else { s->coef = r2->coef; s->exp = r2->exp; r3->next = s; r3 = s; r2 = r2->next; } } if(r1 != NULL){ r3->next = r1; } else { r3->next = r2; } return l3; } void ComputePolylist(Polylist L)/*计算多项式在x=%d的值*/ {Polylist r = L->next; double x = 0; double result = 0; scanf("%lf",&x); while(r != NULL) { result += r->coef * pow(x, r->exp); r = r->next; } printf("ComputePolylist in x=%.2f result is:%.2f\n",x,result); } void DestroyPolylist(Polylist L) { Polynode *p = L ,*q = L->next; while(q) { free(p); p = q; q = q->next; } free(p); printf("destroy"); } 解释一下这个代码

ckage JavaPlane; class Line { private Point p1; private Point p2; public Line(Point p1,Point p2) { this.p1 = p1; this.p2 = p2; } public double getLength() { return Math.sqrt(Math.pow(p1.x-p2.x, 2)+Math.pow(p1.y-p2.y, 2)); } Point getStartPoint() { return p1; } Point getEndPoint() { return p2; } public static boolean point_on_line(Point point, Line line) { Point p1 = Point.sub(line.getStartPoint(), point); Point p2 = Point.sub(line.getEndPoint(), point); return Math.abs(Point.crossProduct(p1, p2)) < 1e-6; } /** * 求两条线的交点 * @return point */ //此处添加代码 /** * 求点到线的距离 * @return double */ //此处添加代码 } package JavaPlane; public class Test { public static void main(String[] args) { Point p1 = new Point(0,0); Point p2 = new Point(1,1); Point p3 = new Point(1,0); Point p4 = new Point(0,0.9); if(p1.compare(p2)) //测试两个点重合 System.out.println("两个点是同一个点"); else System.out.println("两个点不是同一个点"); if(p3.colinear(p1,p2)) //测试三点共线 System.out.println("三点共线"); else System.out.println("三点不共线"); Line l1 = new Line(p1,p2); System.out.println("线的长度:"+l1.getLength()); if(l1.point_on_line(p3, l1)) //测试点在线上 System.out.println("点在线上"); else System.out.println("点不在线上"); double r1 = 1; double r2 = 1; Circle c1 = new Circle(p1,r1); System.out.println("圆c1的面积:"+c1.getArea()); System.out.println("圆c1的圆心坐标:"+c1.getCenter().x+","+c1.getCenter().y); if(c1.point_in_circle(p4, c1)) System.out.println("点在圆内"); else System.out.println("点不在圆内"); Circle c2 = new Circle(p2, r2); Point[] points = Circle.intersect(c1, c2); //测试求两个圆的交点 if (points != null){ System.out.println("第1个交点的坐标:"+points[0].x+","+points[0].y); System.out.println("第2个交点的坐标:"+points[1].x+","+points[1].y); } // 测试求两个线的交点 // 此处添加代码 // 测试求点到线的距离 // 此处添加代码 } }

最新推荐

recommend-type

multisim仿真电路实例700例.rar

multisim仿真电路图
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解
recommend-type

数据结构课程设计:电梯模拟与程序实现

"该资源是山东理工大学计算机学院的一份数据结构课程设计,主题为电梯模拟,旨在帮助学生深化对数据结构的理解,并通过实际编程提升技能。这份文档包含了设计任务的详细说明、进度安排、参考资料以及成绩评定标准。" 在这次课程设计中,学生们需要通过电梯模拟的案例来学习和应用数据结构。电梯模拟的目标是让学生们: 1. 熟练掌握如数组、链表、栈、队列等基本数据结构的操作。 2. 学会根据具体问题选择合适的数据结构,设计算法,解决实际问题。 3. 编写代码实现电梯模拟系统,包括电梯的调度、乘客请求处理等功能。 设计进度分为以下几个阶段: - 2013年1月7日:收集文献资料,完成系统分析。 - 2013年1月10日:创建相关数据结构,开始编写源程序。 - 2013年1月13日:调试程序,记录问题,初步完成课程设计报告。 - 2013年1月15日:提交课程设计报告打印版,进行答辩。 - 2013年1月16日:提交电子版报告和源代码。 参考文献包括了严蔚敏的《数据结构》和《数据结构题集》,谭浩强的《C语言程序设计》以及与所选编程环境相关的C或C++资料,这些都是进行课程设计的重要参考资料。 在成绩评定部分,设计成绩由指导教师填写,并需要在设计结束后进行总结与心得的撰写,这有助于学生反思学习过程,提炼经验。 整个课程设计涵盖了从问题分析、设计、实现到测试的完整过程,对于提升学生的编程能力和问题解决能力具有重要意义。《数据结构》课程是计算机科学教育的基础,通过这样的实践项目,学生们能够更好地理解和运用所学知识,为未来的专业发展打下坚实基础。