if __name__ == '__main__': # 数据预处理 d_train, d_test, d_label = data_preprocess() # 计算设备:GPU cuda device = torch.device('cpu') # 超参数 input_size = 1 hidden_size = 20 num_layers = 2 num_classes = 5 batch_size = 10 num_epochs = 130 learning_rate = 0.01 hyper_parameters = (input_size, hidden_size, num_layers, num_classes, num_epochs, learning_rate) # 创建数据加载器,获得按batch大小读入数据的加载器 train_data = MyDataset(d_train, d_label) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True) test_data = MyDataset(d_test, d_label) test_loader = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=False) list_rate = train(device, train_loader, test_loader, *hyper_parameters) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(np.arange(num_epochs)+1, list_rate) plt.xlabel("num_epochs") plt.ylabel("probability") ax.grid() plt.show()
时间: 2024-04-28 18:22:02 浏览: 92
#pragma_命令集合
这段代码是用 PyTorch 实现的一个简单的神经网络模型,用于分类任务。主要包括以下几个部分:
1. 数据预处理:包括读取数据集、数据清洗、特征工程等。
2. 定义超参数:包括输入大小、隐藏层大小、隐藏层数量、输出类别数量、批次大小、迭代次数、学习率等。
3. 创建数据加载器:使用 PyTorch 的 DataLoader 类,将训练数据和测试数据划分成批次,方便进行训练和测试。
4. 模型训练:使用定义好的超参数和数据加载器,通过反向传播算法进行模型训练,并将每轮训练的准确率保存到一个列表中。
5. 可视化结果:使用 Matplotlib 库将训练过程中每轮的准确率可视化展示出来。
阅读全文