MATLAB:不确定均值和不确定标准差的区间二型模糊聚类算法代码实现】
时间: 2023-10-10 20:12:58 浏览: 193
以下是MATLAB中实现不确定均值和不确定标准差的区间二型模糊聚类算法的代码示例:
```
% 生成随机数据
data = rand(100, 2);
% 设置聚类数量
num_clusters = 3;
% 初始化参数
max_iter = 100;
m = 2;
e = 0.001;
% 计算数据的中心和范围
data_mean = mean(data);
data_range = max(data) - min(data);
% 初始化隶属度矩阵和聚类中心
U = rand(num_clusters, size(data, 1));
U = bsxfun(@rdivide, U, sum(U));
centers = rand(num_clusters, 2) .* repmat(data_range, num_clusters, 1) + repmat(data_mean, num_clusters, 1);
% 开始迭代
for iter = 1:max_iter
% 计算不确定均值和不确定标准差
[um, us] = calculateIntervalMeanStd(U, data, centers, m);
% 更新聚类中心
for i = 1:num_clusters
numerator = 0;
denominator = 0;
for j = 1:size(data, 1)
numerator = numerator + (um(i, j) * data(j, :));
denominator = denominator + um(i, j);
end
centers(i, :) = numerator / denominator;
end
% 更新隶属度矩阵
U_new = zeros(size(U));
for i = 1:num_clusters
for j = 1:size(data, 1)
numerator = 1 ./ (1 + (sqrt(sum((data(j, :) - centers(i, :)).^2)) / us(i, j))^2);
U_new(i, j) = numerator / sum(numerator);
end
end
% 检查是否收敛
if max(abs(U_new(:) - U(:))) < e
break;
end
U = U_new;
end
% 显示结果
plot(data(:,1), data(:,2), 'bo');
hold on;
plot(centers(:,1), centers(:,2), 'r*');
```
其中,`calculateIntervalMeanStd`函数用于计算不确定均值和不确定标准差:
```
function [um, us] = calculateIntervalMeanStd(U, data, centers, m)
num_clusters = size(centers, 1);
num_points = size(data, 1);
um = zeros(num_clusters, num_points);
us = zeros(num_clusters, num_points);
for i = 1:num_clusters
for j = 1:num_points
um(i, j) = sum(U(i, :) .^ m .* data(j, :)) / sum(U(i, :) .^ m);
us(i, j) = sqrt(sum(U(i, :) .^ m .* (data(j, :) - um(i, j)) .^ 2) / sum(U(i, :) .^ m));
end
end
end
```
这段代码中,`U`是隶属度矩阵,`data`是数据矩阵,`centers`是聚类中心矩阵,`m`是模糊指数,`um`和`us`分别是不确定均值和不确定标准差矩阵。
阅读全文