x_d = np.linspace(-4, 8, 2000) density = sum((abs(xi - x_d) < 0.5) for xi in x) plt.fill_between(x_d, density, alpha=0.5) plt.plot(x, np.full_like(x, -0.1), '|k', markeredgewidth=1) plt.axis([-4, 8, -0.2, 8]);
时间: 2023-09-21 22:06:24 浏览: 119
这段代码使用了 Matplotlib 库绘制了一个核密度估计图和一个带有垂直刻度线的直方图。首先,使用 `np.linspace()` 函数生成了一个从 -4 到 8 的包含 2000 个元素的一维数组 `x_d`,用于在 x 轴上绘制核密度估计图。接着,使用列表推导式和 `sum()` 函数计算了每个 `x_d` 值周围 0.5 范围内的数据点数量,并将其存储在 `density` 变量中。然后,使用 `plt.fill_between()` 函数绘制了一条核密度估计曲线,其中 `x_d` 作为 x 坐标,`density` 作为 y 坐标,`alpha` 参数设置了填充颜色的透明度。接着,使用 `plt.plot()` 函数绘制了一条水平直线和垂直刻度线,作为直方图的基准线和数据点的垂直位置。最后,使用 `plt.axis()` 函数设置了 x 轴和 y 轴的范围。
相关问题
修改代码为找出区间[-2,40]之间的曲率极大值点的横坐标:x1 = np.linspace(-2, 40, 10) x2 = np.linspace(-2, 40, 100) sig = 1 w = 1 y_rec = np.zeros_like(x2) curv_list = [] # 计算曲率值 for xi in x2: y = y_rec.copy() for k, xk in enumerate(x1): y += w * gkernel(xi, xk, sig) curv = curvature(x2, y) curv_list.append(curv[0]) # 找到曲率值最大的四个点 idx_max = np.argsort(curv_list)[-10:] x_max = x2[idx_max] x_max_diff = np.diff(x_max) while np.any(x_max_diff < 2): idx = np.argmin(x_max_diff) x_max[idx+1] += 1 x_max_diff = np.diff(x_max) print("曲率最大的十个点的横坐标为:", x_max)
修改代码如下所示,可以找出区间[-2, 40]之间的曲率极大值点的横坐标:
x1 = np.linspace(-2, 40, 1000) # 增加采样点数
x2 = np.linspace(-2, 40, 100)
sig = 1
w = 1
y_rec = np.zeros_like(x2)
curv_list = []
# 计算曲率值
for xi in x2:
y = y_rec.copy()
for k, xk in enumerate(x1):
y += w * gkernel(xi, xk, sig)
curv = curvature(x2, y)
curv_list.append(curv[0])
# 找到曲率值极大的点
idx_max = np.where(np.diff(np.sign(curv_list)) == -2)[0] + 1
x_max = x2[idx_max]
print("区间[-2,40]之间的曲率极大值点的横坐标为:", x_max)
修改后的代码中,增加了采样点数,从而提高曲率计算的精度。找曲率极大值点的方法也进行了修改,使用了 np.diff(np.sign(curv_list)) == -2 来判断曲率极大值点的位置,np.where() 来获取曲率极大值点的索引,最后计算得到曲率极大值点的横坐标。
修改代码为找出区间[-2,40]之间的曲率极大值点的横坐标:mport numpy as np # 定义高斯核函数 def gkernel(x, x0, sig): return np.exp(-(x-x0)**2/(2*sig**2)) # 定义曲率函数 def curvature(x, y): dy = np.gradient(y, x) ddy = np.gradient(dy, x) k = np.abs(ddy) / (1 + dy**2)**1.5 return k # 定义参数和数组 x1 = np.linspace(-2, 40, 10) x2 = np.linspace(-2, 40, 100) sig = 1 w = 1 y_rec = np.zeros_like(x2) curv_list = [] # 计算曲率值 for xi in x2: y = y_rec.copy() for k, xk in enumerate(x1): y += w * gkernel(xi, xk, sig) curv = curvature(x2, y) curv_list.append(curv[0]) # 找到曲率值最大的四个点 idx_max = np.argsort(curv_list)[-10:] x_max = x2[idx_max] x_max_diff = np.diff(x_max) while np.any(x_max_diff < 2): idx = np.argmin(x_max_diff) x_max[idx+1] += 1 x_max_diff = np.diff(x_max) print("曲率最大的十个点的横坐标为:", x_max)
修改代码如下所示,可以找出区间[-2, 40]之间的曲率极大值点的横坐标:
import numpy as np
import matplotlib.pyplot as plt
# 定义高斯核函数
def gkernel(x, x0, sig):
return np.exp(-(x-x0)**2/(2*sig**2))
# 定义曲率函数
def curvature(x, y):
dy = np.gradient(y, x)
ddy = np.gradient(dy, x)
k = np.abs(ddy) / (1 + dy**2)**1.5
return k
# 定义参数和数组
x1 = np.linspace(-2, 40, 1000) # 增加采样点数
x2 = np.linspace(-2, 40, 100)
sig = 1
w = 1
y_rec = np.zeros_like(x2)
curv_list = []
# 计算曲率值
for xi in x2:
y = y_rec.copy()
for k, xk in enumerate(x1):
y += w * gkernel(xi, xk, sig)
curv = curvature(x2, y)
curv_list.append(curv[0])
# 找到曲率值极大的点
idx_max = np.where(np.diff(np.sign(curv_list)) == -2)[0] + 1
x_max = x2[idx_max]
print("区间[-2,40]之间的曲率极大值点的横坐标为:", x_max)
# 绘制曲率函数图像
plt.plot(x2, curv_list)
plt.xlabel('x')
plt.ylabel('Curvature')
plt.title('Curvature Function')
plt.show()
修改后的代码中,除了找曲率极大值点的方法,还增加了绘制曲率函数图像的代码。绘制曲率函数图像可以直观地观察到曲率的变化情况,方便对比和分析。
阅读全文