下面这段代码在做什么? def resize_norm_img(img, max_wh_ratio, rec_image_shape='3,48,320'): rec_image_shape = [int(v) for v in rec_image_shape.split(",")] imgC, imgH, imgW = rec_image_shape assert imgC == img.shape[2] max_wh_ratio = max(max_wh_ratio, imgW / imgH) imgW = int((imgH * max_wh_ratio)) imgW = max(min(imgW, 1280), 16) h, w = img.shape[:2] ratio = w / float(h) ratio_imgH = math.ceil(imgH * ratio) ratio_imgH = max(ratio_imgH, 16) if ratio_imgH > imgW: resized_w = imgW else: resized_w = int(ratio_imgH) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im
时间: 2023-06-03 19:06:21 浏览: 183
这段代码是用来调整图像大小和归一化图像像素值的。函数的输入参数包括原始图片(img)、图像高宽比(max_wh_ratio)、目标图像形状(rec_image_shape)。首先,函数将输入的目标图像形状(rec_image_shape)解析为通道数(imgC)、高(imgH)和宽(imgW)。然后,函数根据图像高宽比(max_wh_ratio)重新计算图像的宽度(imgW),并将其限制在一定的范围内。接下来,函数根据比例计算调整后的图像高度(ratio_imgH)。最后,函数对调整后的图像进行归一化、转置和填充操作,并返回修改后的图像(padding_im)。
阅读全文