C Sharp代码实现Gabor滤波器
时间: 2024-01-27 07:04:05 浏览: 149
可以调用Emgu CV库中的Gabor滤波器实现。以下是示例代码:
using Emgu.CV;
using Emgu.CV.CvEnum;
using Emgu.CV.Structure;
...
// 定义Gabor核的参数
double lambda = 4;
double theta = Math.PI / 4;
double psi = Math.PI / 4;
double sigma = 2;
double gamma = 0.5;
// 调用Gabor滤波器
Image<Gray, float> srcImg = ...
Image<Gray, float> dstImg = new Image<Gray, float>(srcImg.Size);
CvInvoke.cvFilter2D(srcImg.Ptr, dstImg.Ptr, CvEnum.CV_DEPTH.CV_32F,
CvInvoke.cvGetGaborKernel(new Size(9, 9), sigma, theta, lambda, gamma, psi, Emgu.CV.CvEnum.GABOR_TYPE.GABOR_REAL),
new Point(-1, -1));
// 显示结果
ImageViewer.Show(dstImg, "Gabor Filtered Image");
相关问题
图像Gabor滤波器算法C Sharp代码实现
由于Gabor滤波器算法是一种较为复杂的算法,需要进行多次卷积和高斯平滑等操作,因此需要使用一些专业的图像处理库来实现。以下是一个使用AForge.NET库实现Gabor滤波器算法的C#代码示例:
```csharp
using System;
using System.Drawing;
using AForge.Imaging;
using AForge.Imaging.Filters;
using AForge.Math;
public class GaborFilter
{
private double lambda;
private double theta;
private double psi;
private double sigma;
private double gamma;
public GaborFilter(double lambda, double theta, double psi, double sigma, double gamma)
{
this.lambda = lambda;
this.theta = theta;
this.psi = psi;
this.sigma = sigma;
this.gamma = gamma;
}
public Bitmap Apply(Bitmap input)
{
// Convert the input image to grayscale
Grayscale grayscale = new Grayscale(0.2125, 0.7154, 0.0721);
Bitmap grayImage = grayscale.Apply(input);
// Create a Gabor filter
GaborFilter filter = new GaborFilter(lambda, theta, psi, sigma, gamma);
// Apply the filter to the input image
Bitmap filteredImage = filter.Apply(grayImage);
// Return the filtered image
return filteredImage;
}
private Bitmap Apply(Bitmap inputImage)
{
// Get the size of the input image
int width = inputImage.Width;
int height = inputImage.Height;
// Create a complex image to store the filtered image
ComplexImage complexImage = ComplexImage.FromBitmap(inputImage);
// Create a kernel for the Gabor filter
double[,] kernel = CreateGaborKernel(width, height);
// Apply the kernel to the complex image
complexImage.ForwardFourierTransform();
complexImage.ApplyFilter(kernel);
complexImage.BackwardFourierTransform();
// Convert the complex image to a grayscale image
Grayscale grayscale = new Grayscale(0.2125, 0.7154, 0.0721);
Bitmap outputImage = grayscale.Apply(complexImage.ToBitmap());
// Return the filtered image
return outputImage;
}
private double[,] CreateGaborKernel(int width, int height)
{
double[,] kernel = new double[width, height];
// Calculate the maximum distance from the center of the kernel
double maxDistance = Math.Sqrt(Math.Pow(width / 2, 2) + Math.Pow(height / 2, 2));
// Calculate the sine and cosine of the angle theta
double sinTheta = Math.Sin(theta);
double cosTheta = Math.Cos(theta);
// Calculate the constants for the kernel
double sigmaX = sigma;
double sigmaY = sigma / gamma;
double twoSigmaXSquared = 2 * Math.Pow(sigmaX, 2);
double twoSigmaYSquared = 2 * Math.Pow(sigmaY, 2);
double cos2Theta = Math.Cos(2 * theta);
double sin2Theta = Math.Sin(2 * theta);
// Calculate the elements of the kernel
for (int x = 0; x < width; x++)
{
for (int y = 0; y < height; y++)
{
// Calculate the distance from the center of the kernel
double distance = Math.Sqrt(Math.Pow(x - (width / 2), 2) + Math.Pow(y - (height / 2), 2));
// Calculate the x and y components of the rotated coordinates
double xPrime = (x - (width / 2)) * cosTheta + (y - (height / 2)) * sinTheta;
double yPrime = -(x - (width / 2)) * sinTheta + (y - (height / 2)) * cosTheta;
// Calculate the element of the kernel
kernel[x, y] = Math.Exp(-(Math.Pow(xPrime, 2) / twoSigmaXSquared + Math.Pow(yPrime, 2) / twoSigmaYSquared)) * Math.Cos(2 * Math.PI * xPrime / lambda + psi);
}
}
return kernel;
}
}
```
使用方法:
```csharp
Bitmap inputImage = new Bitmap("input.jpg");
GaborFilter filter = new GaborFilter(10, 0, 0, 1, 0.8);
Bitmap outputImage = filter.Apply(inputImage);
outputImage.Save("output.jpg");
```
阅读全文