pytorch实现gan扩充莺尾花数据集代码

时间: 2023-10-10 07:12:01 浏览: 108
以下是使用 PyTorch 实现 GAN 对鸢尾花数据集进行扩充的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms import numpy as np class Generator(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.gen = nn.Sequential( nn.Linear(input_dim, 64), nn.ReLU(), nn.Linear(64, 128), nn.ReLU(), nn.Linear(128, 256), nn.ReLU(), nn.Linear(256, 512), nn.ReLU(), nn.Linear(512, output_dim), nn.Tanh() ) def forward(self, x): return self.gen(x) class Discriminator(nn.Module): def __init__(self, input_dim): super().__init__() self.disc = nn.Sequential( nn.Linear(input_dim, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 1), nn.Sigmoid() ) def forward(self, x): return self.disc(x) # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Hyper-parameters batch_size = 64 input_dim_g = 100 # Input noise dimension for generator input_dim_d = 4 # Input data dimension for discriminator (iris dataset has 4 features) output_dim_g = 4 # Output data dimension for generator (iris dataset has 4 features) lr = 0.0002 num_epochs = 200 # Load the iris dataset def load_data(): transform = transforms.Compose([ transforms.ToTensor(), ]) train_dataset = datasets.load_iris(root="./data", train=True, download=True, transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) return train_loader def train(generator, discriminator, train_loader): # Loss functions and optimizers criterion = nn.BCELoss() optimizer_g = optim.Adam(generator.parameters(), lr=lr) optimizer_d = optim.Adam(discriminator.parameters(), lr=lr) for epoch in range(num_epochs): for batch_idx, (real_data, _) in enumerate(train_loader): real_data = real_data.view(-1, 4).to(device) # Train discriminator: max log(D(x)) + log(1 - D(G(z))) noise = torch.randn(batch_size, input_dim_g).to(device) fake_data = generator(noise) label_real = torch.ones(batch_size, 1).to(device) label_fake = torch.zeros(batch_size, 1).to(device) # Forward pass real and fake data through discriminator separately output_real = discriminator(real_data) output_fake = discriminator(fake_data) # Calculate the loss for discriminator loss_d_real = criterion(output_real, label_real) loss_d_fake = criterion(output_fake, label_fake) loss_d = loss_d_real + loss_d_fake # Backward and optimize discriminator discriminator.zero_grad() loss_d.backward() optimizer_d.step() # Train generator: max log(D(G(z))) noise = torch.randn(batch_size, input_dim_g).to(device) fake_data = generator(noise) # Forward pass fake data through discriminator output_fake = discriminator(fake_data) # Calculate the loss for generator loss_g = criterion(output_fake, label_real) # Backward and optimize generator generator.zero_grad() loss_g.backward() optimizer_g.step() print(f"Epoch [{epoch+1}/{num_epochs}], Loss D: {loss_d.item():.4f}, Loss G: {loss_g.item():.4f}") return generator if __name__ == '__main__': # Set the seed value for reproducibility torch.manual_seed(42) # Load iris dataset and create the dataloader train_loader = load_data() # Initialize generator and discriminator generator = Generator(input_dim_g, output_dim_g).to(device) discriminator = Discriminator(input_dim_d).to(device) # Train the GAN model trained_generator = train(generator, discriminator, train_loader) # Generate fake data and convert it back to original scale with torch.no_grad(): noise = torch.randn(100, input_dim_g).to(device) fake_data = trained_generator(noise) fake_data = fake_data.cpu().numpy() # Convert the normalized data back to the original scale stats = np.load("./data/iris_stats.npz") fake_data = fake_data * stats['std'] + stats['mean'] # Save the generated data np.savetxt("./data/generated_data.csv", fake_data, delimiter=",") ``` 在此示例代码中,我们使用 PyTorch 实现了简单的 GAN 模型。该模型由一个生成器和一个判别器组成。我们通过一个 4 维的鸢尾花数据集用于训练该 GAN 模型,并生成具有相同数据分布的合成数据集。 需要注意的是,在上述示例代码中,我们尚未对数据集进行任何增强。如果需要进行数据增强,则可以使用 PyTorch 的 `transforms` 模块进行数据增强操作。例如,以下代码演示了如何使用 `transforms` 模块进行数据增强操作: ```python transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomRotation(degrees=45), transforms.ToTensor(), ]) ``` 这里,我们使用了随机水平翻转 (`RandomHorizontalFlip`) 和随机旋转 (`RandomRotation`) 进行数据增强。最后,我们使用 `ToTensor` 将数据转换为张量形式,以便将其传递给 GAN 模型进行训练。

相关推荐

最新推荐

recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

在本教程中,我们将探讨如何使用PyTorch框架来实现条件生成对抗网络(CGAN)并利用MNIST数据集生成指定数字的图像。CGAN是一种扩展了基础生成对抗网络(GAN)的概念,它允许在生成过程中加入额外的条件信息,如类...
recommend-type

pytorch学习教程之自定义数据集

在PyTorch中,自定义数据集是深度学习模型训练的关键步骤,因为它允许你根据具体需求组织和处理数据。...这个过程展示了如何利用PyTorch的灵活性来适应各种不同的数据集,从而实现深度学习模型的高效训练。
recommend-type

pytorch实现mnist数据集的图像可视化及保存

在PyTorch中,MNIST数据集是一个常用于手写数字识别任务的经典数据集。本文将详细介绍如何使用PyTorch加载、可视化MNIST数据集中的图像,并将其保存为本地文件。 首先,我们需要导入必要的库。`torch`是PyTorch的...
recommend-type

pytorch实现对输入超过三通道的数据进行训练

在PyTorch中训练输入超过三通道的数据,主要涉及到数据处理和模型构建两个核心环节。在本案例中,我们以视频识别为例,其中输入数据是8秒、25fps的灰度视频,每帧为单通道灰度图像。为了适应模型训练,我们需要将...
recommend-type

基于pytorch的UNet_demo实现及训练自己的数据集.docx

本文将介绍如何在PyTorch环境中实现UNet网络,并训练自定义的数据集。 1. **UNet-PyTorch Demo** - **源码仓库**: 可以从[官方GitHub仓库](https://github.com/leijue222/portrait-matting-unet-flask)克隆一个...
recommend-type

计算机系统基石:深度解析与优化秘籍

深入理解计算机系统(原书第2版)是一本备受推崇的计算机科学教材,由卡耐基梅隆大学计算机学院院长,IEEE和ACM双院院士推荐,被全球超过80所顶级大学选作计算机专业教材。该书被誉为“价值超过等重量黄金”的无价资源,其内容涵盖了计算机系统的核心概念,旨在帮助读者从底层操作和体系结构的角度全面掌握计算机工作原理。 本书的特点在于其起点低但覆盖广泛,特别适合大三或大四的本科生,以及已经完成基础课程如组成原理和体系结构的学习者。它不仅提供了对计算机原理、汇编语言和C语言的深入理解,还包含了诸如数字表示错误、代码优化、处理器和存储器系统、编译器的工作机制、安全漏洞预防、链接错误处理以及Unix系统编程等内容,这些都是提升程序员技能和理解计算机系统内部运作的关键。 通过阅读这本书,读者不仅能掌握系统组件的基本工作原理,还能学习到实用的编程技巧,如避免数字表示错误、优化代码以适应现代硬件、理解和利用过程调用、防止缓冲区溢出带来的安全问题,以及解决链接时的常见问题。这些知识对于提升程序的正确性和性能至关重要,使读者具备分析和解决问题的能力,从而在计算机行业中成为具有深厚技术实力的专家。 《深入理解计算机系统(原书第2版)》是一本既能满足理论学习需求,又能提供实践经验指导的经典之作,无论是对在校学生还是职业程序员,都是提升计算机系统知识水平的理想读物。如果你希望深入探究计算机系统的世界,这本书将是你探索之旅的重要伴侣。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

PHP数据库操作实战:手把手教你掌握数据库操作精髓,提升开发效率

![PHP数据库操作实战:手把手教你掌握数据库操作精髓,提升开发效率](https://img-blog.csdn.net/20180928141511915?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MzE0NzU5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) # 1. PHP数据库操作基础** PHP数据库操作是使用PHP语言与数据库交互的基础,它允许开发者存储、检索和管理数据。本章将介绍PHP数据库操作的基本概念和操作,为后续章节奠定基础。
recommend-type

vue-worker

Vue Worker是一种利用Web Workers技术的 Vue.js 插件,它允许你在浏览器的后台线程中运行JavaScript代码,而不影响主线程的性能。Vue Worker通常用于处理计算密集型任务、异步I/O操作(如文件读取、网络请求等),或者是那些需要长时间运行但不需要立即响应的任务。 通过Vue Worker,你可以创建一个新的Worker实例,并将Vue实例的数据作为消息发送给它。Worker可以在后台执行这些数据相关的操作,然后返回结果到主页面上,实现了真正的非阻塞用户体验。 Vue Worker插件提供了一个简单的API,让你能够轻松地在Vue组件中管理worker实例
recommend-type

《ThinkingInJava》中文版:经典Java学习宝典

《Thinking in Java》中文版是由知名编程作家Bruce Eckel所著的经典之作,这本书被广泛认为是学习Java编程的必读书籍。作为一本面向对象的编程教程,它不仅适合初学者,也对有一定经验的开发者具有启发性。本书的核心目标不是传授Java平台特定的理论,而是教授Java语言本身,着重于其基本语法、高级特性和最佳实践。 在内容上,《Thinking in Java》涵盖了Java 1.2时期的大部分关键特性,包括Swing GUI框架和新集合类库。作者通过清晰的讲解和大量的代码示例,帮助读者深入理解诸如网络编程、多线程处理、虚拟机性能优化以及与其他非Java代码交互等高级概念。书中提供了320个实用的Java程序,超过15000行代码,这些都是理解和掌握Java语言的宝贵资源。 作为一本获奖作品,Thinking in Java曾荣获1995年的Software Development Jolt Award最佳书籍大奖,体现了其在业界的高度认可。Bruce Eckel不仅是一位经验丰富的编程专家,还是C++领域的权威,他拥有20年的编程经历,曾在世界各地教授对象编程,包括C++和Java。他的著作还包括Thinking in C++,该书同样广受好评。 作者不仅是一位技术导师,还是一位教育家,他善于用易于理解的方式阐述复杂的编程概念,使读者能够领略到编程中的“智慧”。与其他Java教材相比,《Thinking in Java》以其成熟、连贯、严谨的风格,赢得了读者的一致赞誉,被誉为最全面且实例恰当的编程指南,是学习Java过程中不可或缺的参考资料。 此外,本书还提供了配套的CD,包含15小时的语音授课,以及可以从Bruce Eckel的官方网站www.BruceEckel.com免费获取的源码和电子版更新,确保读者能够跟随最新的技术发展保持同步。无论你是Java新手还是进阶者,《Thinking in Java》都是一次深入探索Java世界的重要旅程。