jpg图像压缩代码实现
时间: 2023-11-06 20:07:23 浏览: 73
JPEG 是一种基于离散余弦变换(DCT)的图像压缩标准,编码器和解码器都比较复杂。以下是 JPEG 编码器的代码实现:
```python
import numpy as np
from scipy.fftpack import dct
from skimage import io
from skimage.color import rgb2ycbcr
def block_split(img, block_size):
h, w = img.shape[:2]
bh, bw = block_size
return [img[i:i+bh, j:j+bw] for i in range(0, h, bh) for j in range(0, w, bw)]
def dct_transform(block):
return dct(dct(block.T, norm='ortho').T, norm='ortho')
def quantize(block, qtable):
return np.round(block / qtable)
def zigzag_scan(block):
return np.concatenate([np.diagonal(block[::-1, :], i)[::(2*(i % 2)-1)] for i in range(1-block.shape[0], block.shape[0])])
def encode_image(img, block_size, qtable):
img = rgb2ycbcr(img)
blocks = block_split(img[:, :, 0], block_size)
dct_coeffs = [dct_transform(block) for block in blocks]
quantized_coeffs = [quantize(coeff, qtable) for coeff in dct_coeffs]
zigzag_coeffs = [zigzag_scan(coeff) for coeff in quantized_coeffs]
bitstream = ''
for coeff in zigzag_coeffs:
bitstream += encode_coeff(coeff)
return bitstream
```
上述代码中,首先将图像分成若干个大小为 block_size 的块,然后对每个块进行 DCT 变换,得到 DCT 系数。接着,对 DCT 系数进行量化,得到量化系数。然后,对量化系数进行 Zigzag 扫描,将系数按照一定顺序排列,以便进行熵编码。最后,将 Zigzag 排列后的系数进行熵编码,得到压缩后的比特流。
需要注意的是,上述代码中使用了量化表 qtable,这是一种将 DCT 系数量化为整数的方法,可以根据不同的应用场景选择不同的量化表,以实现更好的压缩效果和图像质量。
阅读全文