lb = LabelBinarizer().fit(Y_train) Y_train = lb.transform(Y_train) Y_test = lb.transform(Y_test)

时间: 2024-05-26 16:14:31 浏览: 14
这段代码是用来进行标签二值化(Label Binarization)的。在机器学习中,标签通常是字符串或整数等形式,但是很多算法需要将标签转化为二进制形式进行处理,因此需要进行标签二值化。LabelBinarizer是sklearn库中的一个工具类,用来将标签转化为二进制形式。fit方法会学习标签的种类,transform方法会将标签转化为二进制形式。这段代码将训练集和测试集的标签都进行了二值化处理。
相关问题

加载数据集 train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv') # 提取特征和标签 train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0] test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0]# 对标签进行二进制编码 lb = LabelBinarizer() train_labels = lb.fit_transform(train_labels) test_labels = lb.fit_transform(test_labels) # 将特征值缩放到0-1之间并且reshape为(28,28,1) train_features = train_features.values.reshape(-1, 28, 28, 1) / 255. test_features = test_features.values.reshape(-1, 28, 28, 1) / 255.在以上代码基础上使用tensorflow构建深度神经网络处理mnist数据集,给出代码,请注意是深度神经网络,不是卷积神经网络

好的,以下是使用 TensorFlow 构建深度神经网络处理 MNIST 数据集的代码: ```python import tensorflow as tf from tensorflow.keras.layers import Dense, Flatten # 加载数据集 train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv') # 提取特征和标签 train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0] test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0] # 对标签进行二进制编码 lb = LabelBinarizer() train_labels = lb.fit_transform(train_labels) test_labels = lb.fit_transform(test_labels) # 将特征值缩放到0-1之间并且reshape为(28,28,1) train_features = train_features.values.reshape(-1, 28, 28, 1) / 255. test_features = test_features.values.reshape(-1, 28, 28, 1) / 255. # 构建模型 model = tf.keras.Sequential([ Flatten(input_shape=(28, 28, 1)), Dense(256, activation='relu'), Dense(128, activation='relu'), Dense(10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(train_features, train_labels, epochs=10, validation_data=(test_features, test_labels)) # 评估模型 test_loss, test_acc = model.evaluate(test_features, test_labels, verbose=2) print('Test accuracy:', test_acc) ``` 这个模型有两个隐藏层,分别是 256 和 128 个神经元,激活函数都使用 ReLU,输出层有 10 个神经元,激活函数使用 softmax。在编译模型时使用了 Adam 优化器和交叉熵损失函数。最后训练模型并评估模型的性能。

# 加载数据集 train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv') # 提取特征和标签 train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0] test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0]# 对标签进行二进制编码 lb = LabelBinarizer() train_labels = lb.fit_transform(train_labels) test_labels = lb.fit_transform(test_labels) # 将特征值缩放到0-1之间并且reshape为(28,28,1) train_features = train_features.values.reshape(-1, 28, 28, 1) / 255. test_features = test_features.values.reshape(-1, 28, 28, 1) / 255.在以上代码基础上使用tensorflow构建深度神经网络处理mnist数据集,给出代码

好的,以下是使用 TensorFlow 构建深度神经网络处理 MNIST 数据集的代码: ```python import tensorflow as tf from tensorflow.keras.layers import Conv2D, Flatten, Dense, MaxPooling2D, Dropout # 加载数据集 train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv') train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0] test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0] # 对标签进行二进制编码 lb = LabelBinarizer() train_labels = lb.fit_transform(train_labels) test_labels = lb.fit_transform(test_labels) # 将特征值缩放到0-1之间并且reshape为(28,28,1) train_features = train_features.values.reshape(-1, 28, 28, 1) / 255. test_features = test_features.values.reshape(-1, 28, 28, 1) / 255. # 构建模型 model = tf.keras.Sequential([ Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), MaxPooling2D((2, 2)), Conv2D(64, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Flatten(), Dense(128, activation='relu'), Dropout(0.5), Dense(10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels)) ``` 这里使用了 `Sequential()` 方法来构建模型,该方法会按照添加的顺序自动构建网络层。模型中包含两个卷积层、两个池化层、一个全连接层和一个输出层。其中使用了 `Dropout()` 方法来防止过拟合。 在编译模型时,使用了 `categorical_crossentropy` 作为损失函数,使用了 `adam` 优化器。在训练模型时,使用了 `fit()` 方法进行训练,其中的参数分别是:训练数据集、训练标签、迭代次数、批次大小以及测试数据集和测试标签用于验证模型的效果。

相关推荐

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense from pyswarm import pso import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score file = "zhong.xlsx" data = pd.read_excel(file) #reading file X=np.array(data.loc[:,'种植密度':'有效积温']) y=np.array(data.loc[:,'产量']) y.shape=(185,1) # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.25, random_state=10) SC=StandardScaler() X_train=SC.fit_transform(X_train) X_test=SC.fit_transform(X_test) y_train=SC.fit_transform(y_train) y_test=SC.fit_transform(y_test) print("X_train.shape:", X_train.shape) print("X_test.shape:", X_test.shape) print("y_train.shape:", y_train.shape) print("y_test.shape:", y_test.shape) # 定义BP神经网络模型 def nn_model(X): model = Sequential() model.add(Dense(8, input_dim=X_train.shape[1], activation='relu')) model.add(Dense(12, activation='relu')) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') return model # 定义适应度函数 def fitness_func(X): model = nn_model(X) model.fit(X_train, y_train, epochs=60, verbose=2) score = model.evaluate(X_test, y_test, verbose=2) print(score) # 定义变量的下限和上限 lb = [5, 5] ub = [30, 30] # 利用PySwarm库实现改进的粒子群算法来优化BP神经网络预测模型 result = pso(fitness_func, lb, ub) # 输出最优解和函数值 print('最优解:', result[0]) print('最小函数值:', result[1]) mpl.rcParams["font.family"] = "SimHei" mpl.rcParams["axes.unicode_minus"] = False # 绘制预测值和真实值对比图 model = nn_model(X) model.fit(X_train, y_train, epochs=60, verbose=2) y_pred = model.predict(X_test) y_true = SC.inverse_transform(y_test) y_pred=SC.inverse_transform(y_pred) plt.figure() plt.plot(y_true,"bo-",label = '真实值') plt.plot(y_pred,"ro-", label = '预测值') plt.title('神经网络预测展示') plt.xlabel('序号') plt.ylabel('产量') plt.legend(loc='upper right') plt.show() print("R2 = ",r2_score(y_test, y_pred)) # R2 # 绘制损失函数曲线图 model = nn_model(X) history = model.fit(X_train, y_train, epochs=60, validation_data=(X_test, y_test), verbose=2) plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='test') plt.legend() plt.show() mae = mean_absolute_error(y_test, y_pred) print('MAE: %.3f' % mae) mse = mean_squared_error(y_test, y_pred) print('mse: %.3f' % mse)

最新推荐

recommend-type

CCD式铆合测定机保养说明书.doc

CCD式铆合测定机保养说明书
recommend-type

IOS操作系统开发/调试的案例

IOS操作系统开发/调试的案例 iOS操作系统开发和调试是一个复杂但非常有趣的过程。下面是一个简单的iOS应用开发案例,展示了如何使用Swift和Xcode开发一个基本的iOS应用,并进行调试。
recommend-type

【精美排版】基于STCC单片机的简易电子琴.doc

单片机
recommend-type

【精品】毕业设计:单片机模拟交通灯设计.doc

单片机
recommend-type

ATM系统需求说明书.doc

ATM系统需求说明书
recommend-type

计算机基础知识试题与解答

"计算机基础知识试题及答案-(1).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了计算机历史、操作系统、计算机分类、电子器件、计算机系统组成、软件类型、计算机语言、运算速度度量单位、数据存储单位、进制转换以及输入/输出设备等多个方面。 1. 世界上第一台电子数字计算机名为ENIAC(电子数字积分计算器),这是计算机发展史上的一个重要里程碑。 2. 操作系统的作用是控制和管理系统资源的使用,它负责管理计算机硬件和软件资源,提供用户界面,使用户能够高效地使用计算机。 3. 个人计算机(PC)属于微型计算机类别,适合个人使用,具有较高的性价比和灵活性。 4. 当前制造计算机普遍采用的电子器件是超大规模集成电路(VLSI),这使得计算机的处理能力和集成度大大提高。 5. 完整的计算机系统由硬件系统和软件系统两部分组成,硬件包括计算机硬件设备,软件则包括系统软件和应用软件。 6. 计算机软件不仅指计算机程序,还包括相关的文档、数据和程序设计语言。 7. 软件系统通常分为系统软件和应用软件,系统软件如操作系统,应用软件则是用户用于特定任务的软件。 8. 机器语言是计算机可以直接执行的语言,不需要编译,因为它直接对应于硬件指令集。 9. 微机的性能主要由CPU决定,CPU的性能指标包括时钟频率、架构、核心数量等。 10. 运算器是计算机中的一个重要组成部分,主要负责进行算术和逻辑运算。 11. MIPS(Millions of Instructions Per Second)是衡量计算机每秒执行指令数的单位,用于描述计算机的运算速度。 12. 计算机存储数据的最小单位是位(比特,bit),是二进制的基本单位。 13. 一个字节由8个二进制位组成,是计算机中表示基本信息的最小单位。 14. 1MB(兆字节)等于1,048,576字节,这是常见的内存和存储容量单位。 15. 八进制数的范围是0-7,因此317是一个可能的八进制数。 16. 与十进制36.875等值的二进制数是100100.111,其中整数部分36转换为二进制为100100,小数部分0.875转换为二进制为0.111。 17. 逻辑运算中,0+1应该等于1,但选项C错误地给出了0+1=0。 18. 磁盘是一种外存储设备,用于长期存储大量数据,既可读也可写。 这些题目旨在帮助学习者巩固和检验计算机基础知识的理解,涵盖的领域广泛,对于初学者或需要复习基础知识的人来说很有价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

设置ansible 开机自启

Ansible是一个强大的自动化运维工具,它可以用来配置和管理服务器。如果你想要在服务器启动时自动运行Ansible任务,通常会涉及到配置服务或守护进程。以下是使用Ansible设置开机自启的基本步骤: 1. **在主机上安装必要的软件**: 首先确保目标服务器上已经安装了Ansible和SSH(因为Ansible通常是通过SSH执行操作的)。如果需要,可以通过包管理器如apt、yum或zypper安装它们。 2. **编写Ansible playbook**: 创建一个YAML格式的playbook,其中包含`service`模块来管理服务。例如,你可以创建一个名为`setu
recommend-type

计算机基础知识试题与解析

"计算机基础知识试题及答案(二).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了操作系统、硬件、数据表示、存储器、程序、病毒、计算机分类、语言等多个方面的知识。 1. 计算机系统由硬件系统和软件系统两部分组成,选项C正确。硬件包括计算机及其外部设备,而软件包括系统软件和应用软件。 2. 十六进制1000转换为十进制是4096,因此选项A正确。十六进制的1000相当于1*16^3 = 4096。 3. ENTER键是回车换行键,用于确认输入或换行,选项B正确。 4. DRAM(Dynamic Random Access Memory)是动态随机存取存储器,选项B正确,它需要周期性刷新来保持数据。 5. Bit是二进制位的简称,是计算机中数据的最小单位,选项A正确。 6. 汉字国标码GB2312-80规定每个汉字用两个字节表示,选项B正确。 7. 微机系统的开机顺序通常是先打开外部设备(如显示器、打印机等),再开启主机,选项D正确。 8. 使用高级语言编写的程序称为源程序,需要经过编译或解释才能执行,选项A正确。 9. 微机病毒是指人为设计的、具有破坏性的小程序,通常通过网络传播,选项D正确。 10. 运算器、控制器及内存的总称是CPU(Central Processing Unit),选项A正确。 11. U盘作为外存储器,断电后存储的信息不会丢失,选项A正确。 12. 财务管理软件属于应用软件,是为特定应用而开发的,选项D正确。 13. 计算机网络的最大好处是实现资源共享,选项C正确。 14. 个人计算机属于微机,选项D正确。 15. 微机唯一能直接识别和处理的语言是机器语言,它是计算机硬件可以直接执行的指令集,选项D正确。 16. 断电会丢失原存信息的存储器是半导体RAM(Random Access Memory),选项A正确。 17. 硬盘连同驱动器是一种外存储器,用于长期存储大量数据,选项B正确。 18. 在内存中,每个基本单位的唯一序号称为地址,选项B正确。 以上是对文档部分内容的详细解释,这些知识对于理解和操作计算机系统至关重要。