while rounds < max_iterations: rounds += 1 solutions = [] for _ in range(optimizer.population_size): x = optimizer.ask() x[0] = int(x[0]) x[1] = int(x[1]) # 添加随机扰动,以扩大搜索空间 x[2] += random.uniform(-0.1, 0.1) x[3] += random.uniform(-0.1, 0.1) # 检查解向量是否在搜索空间内 if (x[0] < Min_pump_zcjj or x[0] > Max_pump_zcjj or x[1] < Min_pump_bdljd or x[1] > Max_pump_bdljd or x[2] < Min_pump_bdwz or x[2] > Max_pump_bdwz or x[3] < Min_pump_skhd or x[3] > Max_pump_skhd): continue if (x[0] == 51 and x[1] == 51) or (x[0] == 26 and x[1] == 26): continue value = quadratic(x[0], x[1], x[2], x[3]) solutions.append((x, value))

时间: 2024-01-24 07:02:48 浏览: 24
这段代码实现了优化过程的循环部分,即通过迭代不断生成新的解向量,计算其目标函数值,并选择最优的解向量。 循环中的变量有: - rounds:当前迭代的轮数,初始化为0。 - max_iterations:最大迭代次数。 - solutions:已生成的解向量及其对应的目标函数值,用于后续的选择和更新操作。 - optimizer.population_size:优化器的种群大小,即每轮生成的解向量数量。 在每轮循环中,先通过 optimizer.ask() 方法生成一组解向量,然后进行以下操作: 1. 将第一个和第二个变量转换为整数型,因为其表示的是坐标值。 2. 对第三个和第四个变量添加随机扰动,以扩大搜索空间。 3. 检查当前解向量是否在搜索空间内,如果不在,则继续生成下一个解向量。 4. 如果当前解向量的坐标值等于最小或最大值,则继续生成下一个解向量。 5. 计算当前解向量的目标函数值,并将其和解向量存储到 solutions 中。 最后,循环结束后,通过 optimizer.tell(solutions) 方法更新优化器的内部状态,并选择最优的解向量返回。
相关问题

while True: # 生成一个新的种群,每个个体是一个解向量 rounds += 1 solutions = [] for _ in range(max_iterations): x = optimizer.ask() x[0] = int(x[0]) x[1] = int(x[1]) if (x[0] == 51 and x[1] == 51) or (x[0] == 26 and x[1] == 26): pass else: value = quadratic(x[0], x[1], x[2], x[3]) solutions.append((x, value)) # 检查解向量个数是否等于种群大小 if len(solutions) != optimizer.population_size: while len(solutions) < optimizer.population_size: x = [random.randint(Min_pump_zcjj, Max_pump_zcjj), random.randint(Min_pump_bdljd, Max_pump_bdljd), random.uniform(Min_pump_bdwz, Max_pump_bdwz), random.uniform(Min_pump_skhd, Max_pump_skhd)] value = quadratic(x[0], x[1], x[2], x[3]) solutions.append((x, value)) # 随机生成一些解向量,补足不足的部分 optimizer.tell(solutions)

这段代码是一个使用 CMA-ES 优化器进行二次函数最小化的例子。它采用了一个基本的遗传算法的流程,不断生成新的种群,并对种群中的每个个体求解目标函数的值。然后,它把求解结果告诉优化器,优化器会根据当前的状态信息来更新种群,让下一轮迭代更加接近最优解。 具体来说,这个代码中的 `while True:` 循环表示不断进行迭代,直到达到预定的停止条件为止。在每一轮迭代中,它会生成一个新的种群,并对种群中的每个个体求解目标函数的值。然后,它通过调用 `optimizer.tell(solutions)` 方法,把求解结果告诉优化器。`solutions` 是一个列表,其中每个元素是一个元组 `(x, value)`,表示一个解向量 `x` 和对应的目标函数值 `value`。 在生成新的种群时,这个代码使用了一个 `for _ in range(max_iterations):` 循环,表示在当前的种群中进行 `max_iterations` 次迭代。在每次迭代中,它会调用 `optimizer.ask()` 方法,生成一个新的解向量 `x`。然后,它会对 `x` 进行一些预处理,例如将 `x[0]` 和 `x[1]` 强制转换为整数,以确保解向量的合法性。然后它会计算目标函数的值,并把 `(x, value)` 添加到 `solutions` 列表中。 如果当前的种群中的个体数量不足 `optimizer.population_size`,这个代码就会进入一个 `while` 循环,不断随机生成新的解向量,并计算目标函数的值,直到种群中的个体数量达到 `optimizer.population_size`。然后,它会调用 `optimizer.tell(solutions)` 方法,把求解结果告诉优化器,优化器会根据当前的状态来更新种群。 最终,这个代码会在达到预定的停止条件时停止迭代,并返回找到的最优解。

optimizer = CMA(mean=np.mean(bounds, axis=1), sigma=1, bounds=bounds, seed=0) # 初始化一个计时器,记录优化开始的时间 start_time = time.time() # 循环优化,直到达到优化目标或时间限制为止 rounds = 0 from datetime import datetime df = pd.DataFrame(columns=['时间戳', '优化值', 'X坐标', 'Y坐标', '靶点位置', '射孔厚度', '迭代轮数']) #max_iterations = 1000 max_iterations = 1000 # 最大迭代次数 tolerance = 1e-6 # 目标函数值的变化量阈值 mean_tol = 1e-6 # 均值向量变化量阈值 sigma_tol = 1e-6 # 标准差变化量阈值 # 生成一个新的种群,每个个体是一个解向量 rounds += 1 solutions = [] for j in range(max_iterations): x = optimizer.ask() value = quadratic(x[0], x[1], x[2], x[3]) solutions.append((x, value)) optimizer.tell(solutions)

这段代码看起来是一个使用 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 算法来进行优化的过程。具体来说,代码中的 `CMA` 是一个 CMA-ES 优化器的对象,它的参数包括种群的均值、方差、边界等信息。在每次迭代中,通过 `optimizer.ask()` 得到一个新的解向量,在对该解向量进行评估后,将其加入种群中,通过 `optimizer.tell(solutions)` 更新种群信息。在达到一定的迭代次数或目标函数的变化量达到阈值后,优化过程结束,最优解便是种群中的最优个体。其中,`quadratic()` 函数是目标函数的实现,但是我并不知道具体的目标函数形式。

相关推荐

最新推荐

recommend-type

源代码-QQ价值评估程序ASP爬虫 [缓存技术版].zip

源代码-QQ价值评估程序ASP爬虫 [缓存技术版].zip
recommend-type

2007-2021年 乡村旅游指标-最美乡村数、旅游示范县数、旅行社数、景区数、农家乐数.zip

乡村旅游也是促进乡村经济发展的有效途径。通过发展乡村旅游,可以带动乡村相关产业的发展,提高乡村居民的收入,促进乡村的经济发展和社会进步。此外,乡村旅游还能促进城乡交流,推动城乡统筹发展。 数据整理各个省地区乡村旅游相关指标包括从业人数、美丽乡村数量、乡村旅游示范县数量,传统村落数量、景区数量、旅游收入,旅客周转量数据​。 数据名称:乡村旅游指标-最美乡村数、旅游示范县数、旅行社数、景区数、农家乐数 城市、年份、星级饭店数/家、A 级旅游景区数量/个、旅行社数/家、旅游接待总人数/万人、旅游总收入/亿元、旅客周转量、GDP、当地从业人员、森林覆盖率、生活垃圾无害化处理率、PM2.5浓度、中国美丽休闲乡村数量、休闲农业与乡村旅游示范县(点)、传统村落数量
recommend-type

C语言入门教程及100例

c语言基础学习及实用基础案例,帮助掌握编码基础
recommend-type

elasticsearch下载配置及案例&项目源码

elasticsearch下载配置及案例&项目源码
recommend-type

a*搜索求解8数码问题prediction-maste笔记

a*搜索求解8数码问题
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。