正如标题,这是一道板子题。 给定一个长为n 的序列a 。 有m 次询问,求区间[l,r] 中出现次数第k 小的数,若有多个则输出最小的。 出现次数第k 小的数指恰有k-1 个数的出现次数严格小于该数。c++实现
时间: 2024-03-07 17:51:20 浏览: 93
好的,下面是使用分治+主席树的C++实现:
```cpp
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1e5 + 10, M = 1e6 + 10;
int n, m;
int a[N], v[N], w[M], h[M], idx;
int cnt[N], root[N], l[M], r[M], sum[M], cntv[M];
void insert(int& u, int l, int r, int x) {
u = ++ idx;
sum[u] = sum[h[u - 1]];
cntv[u] = cntv[h[u - 1]];
if (l == r) {
sum[u] ++;
cntv[u] ++;
return;
}
int mid = l + r >> 1;
if (x <= mid) {
insert(l[u], l, mid, x);
} else {
insert(r[u], mid + 1, r, x);
}
sum[u] = sum[l[u]] + sum[r[u]];
cntv[u] = cntv[l[u]] + cntv[r[u]];
}
int query(int ul, int ur, int vl, int vr, int l, int r, int k) {
if (l == r) {
return l;
}
int mid = l + r >> 1;
int cnt = sum[l[ur]] + sum[l[vl]] - sum[l[ul - 1]] - sum[l[vl - 1]];
if (cnt >= k) {
return query(l[ul], l[ur], l[vl], l[vr], l, mid, k);
} else {
return query(r[ul], r[ur], r[vl], r[vr], mid + 1, r, k - cnt);
}
}
void build(int u, int l, int r) {
for (int i = l; i <= r; i ++ ) {
insert(root[u], 1, n, a[i]);
}
if (l == r) {
return;
}
int mid = l + r >> 1;
build(u << 1, l, mid);
build(u << 1 | 1, mid + 1, r);
}
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i ++ ) {
cin >> a[i];
v[i] = a[i];
}
sort(v + 1, v + n + 1);
int k = unique(v + 1, v + n + 1) - v - 1;
for (int i = 1; i <= n; i ++ ) {
a[i] = lower_bound(v + 1, v + k + 1, a[i]) - v;
w[a[i]] ++;
}
build(1, 1, n);
int q = 0;
for (int i = 1; i <= m; i ++ ) {
int l, r, k;
cin >> l >> r >> k;
q ++ ;
l[q] = l, r[q] = r;
for (int j = 1; j <= k; j ++ ) {
h[q * k + j] = root[1];
}
}
for (int i = 1; i <= q * k; i ++ ) {
l[i] = l[(i - 1) / k + 1];
r[i] = r[(i - 1) / k + 1];
}
for (int i = 1; i <= k; i ++ ) {
cnt[i] = cnt[i - 1] + w[i];
}
for (int i = 1; i <= q * k; i ++ ) {
if (sum[h[i]] - sum[h[i - 1]]) {
int x = query(h[l[i] - 1], h[r[i]], h[cnt[a[query(h[l[i] - 1], h[r[i]], 1, k, 1, a[query(h[l[i] - 1], h[r[i]], 1, k, 1, k)] - 1)]]], h[cnt[a[query(h[l[i] - 1], h[r[i]], 1, k, 1, k)] - 1] + 1], 1, k, sum[h[i]] - sum[h[i - 1]]);
cout << v[x] << endl;
} else {
cout << -1 << endl;
}
}
return 0;
}
```
这里的时间复杂度为$O(n\log^2n + m\log n \log k)$,其中$k$为不同数字的数量,空间复杂度为$O(n\log n)$。
阅读全文