spark如何读写ozone?请写出详细代码案例,并写出maven依赖
时间: 2024-03-08 14:46:27 浏览: 69
立体声像插件iZotope-Ozone Imager_v1.0(Win版)
Spark可以通过Hadoop的FileSystem API来读写Ozone,具体实现如下:
```scala
import org.apache.hadoop.fs.FileSystem
import org.apache.hadoop.fs.Path
import org.apache.hadoop.ozone.client.OzoneClient
import org.apache.hadoop.ozone.client.OzoneClientFactory
import org.apache.hadoop.ozone.client.OzoneBucket
import org.apache.hadoop.ozone.client.io.OzoneOutputStream
import org.apache.spark.rdd.RDD
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
object SparkOzoneExample {
def main(args: Array[String]): Unit = {
// 初始化Ozone客户端
val ozoneClient: OzoneClient = OzoneClientFactory.getClient
val bucket: OzoneBucket = ozoneClient.getObjectStore.createBucket("mybucket")
val volume: String = bucket.getVolumeName
val bucketName: String = bucket.getName
// 初始化SparkSession
val spark = SparkSession.builder()
.appName("SparkOzoneExample")
.master("local[*]")
.getOrCreate()
// 读取Ozone中的文件
val fileSystem: FileSystem = FileSystem.get(spark.sparkContext.hadoopConfiguration)
val path: Path = new Path(s"o3://${volume}.${bucketName}/myFile")
val file: RDD[String] = spark.sparkContext.textFile(path.toString)
// 处理数据
val data: DataFrame = spark.read.json(file)
val result: DataFrame = data.groupBy("category").agg(sum("value"))
// 写入Ozone中的文件
val ozoneOutput: OzoneOutputStream = bucket.createKey("outputFile")
result.write.json(ozoneOutput)
ozoneOutput.close()
// 关闭Ozone客户端
ozoneClient.close()
}
}
```
这里我们首先初始化了一个Ozone客户端,并创建了一个名为`mybucket`的桶。然后,我们使用Spark来读取Ozone中的文件,并对数据进行处理。最后,我们将处理结果写回到Ozone中的一个名为`outputFile`的文件中。
下面是pom.xml文件中需要添加的Maven依赖:
```xml
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-ozone-client</artifactId>
<version>0.5.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>3.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>3.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.1.2</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.12</artifactId>
<version>3.1.2</version>
</dependency>
```
阅读全文