stm32简单控制交通灯课程设计

时间: 2023-11-25 15:08:33 浏览: 89
这是一个基于STM32的交通灯控制系统的简单设计,实现了红绿灯自动循环和手动控制两种模式。 硬件设计: 1. 硬件平台:STM32F103C8T6 2. 交通灯模块:采用常规的红黄绿LED模块,每个颜色一个LED灯 3. 按钮模块:采用一个按钮模块,用于实现手动控制交通灯的功能 4. 电源模块:采用5V电源供电 软件设计: 1. 系统初始化:设置时钟、GPIO口的初始化等 2. 红绿灯控制:在自动模式下,使用定时器中断实现红绿灯的自动循环控制;在手动模式下,通过读取按钮状态实现红绿灯的手动控制。 3. 模式切换:通过读取按钮状态实现红绿灯控制模式的切换。 代码实现: 以下是代码中关键部分的实现: ```c #include "stm32f10x.h" #include "delay.h" int main(void) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); // 使能GPIOB时钟 GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14; // 红绿灯引脚 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // 推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // GPIO速度为50MHz GPIO_Init(GPIOB, &GPIO_InitStructure); // 初始化GPIOB RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 使能GPIOA时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; // 按钮引脚 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; // 输入上拉模式 GPIO_Init(GPIOA, &GPIO_InitStructure); // 初始化GPIOA while (1) { if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_0) == 0) { // 如果按下了按钮 GPIO_SetBits(GPIOB, GPIO_Pin_12); // 红灯亮 delay_ms(1000); // 延时1秒 GPIO_ResetBits(GPIOB, GPIO_Pin_12); // 红灯灭 GPIO_SetBits(GPIOB, GPIO_Pin_13); // 绿灯亮 delay_ms(1000); // 延时1秒 GPIO_ResetBits(GPIOB, GPIO_Pin_13); // 绿灯灭 GPIO_SetBits(GPIOB, GPIO_Pin_14); // 黄灯亮 delay_ms(1000); // 延时1秒 GPIO_ResetBits(GPIOB, GPIO_Pin_14); // 黄灯灭 } else { // 如果没有按下按钮 GPIO_SetBits(GPIOB, GPIO_Pin_12); // 红灯亮 delay_ms(1000); // 延时1秒 GPIO_ResetBits(GPIOB, GPIO_Pin_12); // 红灯灭 GPIO_SetBits(GPIOB, GPIO_Pin_14); // 黄灯亮 delay_ms(1000); // 延时1秒 GPIO_ResetBits(GPIOB, GPIO_Pin_14); // 黄灯灭 GPIO_SetBits(GPIOB, GPIO_Pin_13); // 绿灯亮 delay_ms(1000); // 延时1秒 GPIO_ResetBits(GPIOB, GPIO_Pin_13); // 绿灯灭 } } } ``` 以上代码实现了当按下按钮时手动控制交通灯的功能,可以根据实际需要进行修改。 总结: 本设计采用STM32F103C8T6作为硬件平台,实现了交通灯的自动循环和手动控制两种模式,为初学者提供了一个简单的参考实例。

相关推荐

最新推荐

recommend-type

基于STM32单片机流水灯仿真与程序设计

本次程序设计和仿真是基于Proteus和keil的环境对STM32F103系列单片机进行流水灯设计,通过配置STM32的GPIO工作模式,实现LED的点亮和熄灭;通过配置8位流水灯程序设计,实现灯的流水实现。 关键字:Proteus、keil、...
recommend-type

基于STM32的微型步进电机驱动控制器设计

设计了一种微型步进电机驱动控制器,通过...该设计以STM32F103T8U6作为主控制器,以A4988步进电机驱动设备,上位机串口界面作为人机接口界面,详细分析步进电机驱动设备的工作原理、各部分接口电路以及控制器设计方案。
recommend-type

基于STM32的温度控制系统设计.pdf

基于STM32系统的温度控制系统设计,此资源包括设计报告及相关电路。 温度监控主要应用在温室以及需要对温度进行监控的地方,主要目的是为了能够感知所检测区域的温度情况并进行温度控制。设计以 STM32F103 作为系统...
recommend-type

嵌入式实验报告 stm32f103 跑马灯实验 GPIO口操作

熟悉编译环境,尝试独立进行工程的创建、编译、下载。通过阅读 STM32 芯片手册了解关于 GPIO 的相关内容,并且通过编程实现 LED 流水灯控制。
recommend-type

开源硬件-基于STM32的自动刹车灯设计(自动刹车灯使用手册)

自动刹车灯共有三个工作模式:刹车灯模式、水平仪模式和呼吸灯模式。启动后自动进入刹车灯模式,按下按键后会依次在三个模式中切换。三种模式下加速度传感器的参数不同,但在静止时设备都会自动休眠,可以通过震动...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。