keras搭建的卷积神经网络怎么加入CBAM注意力机制
时间: 2023-09-17 14:07:39 浏览: 273
要在Keras卷积神经网络中加入CBAM注意力机制,需要按照以下步骤进行操作:
1. 导入必要的Keras库和模块,例如:Conv2D、Activation、Add、Lambda等。
2. 定义CBAM注意力机制的两个模块:通道注意力模块和空间注意力模块。
3. 将通道注意力模块和空间注意力模块组合成CBAM模块。
4. 在卷积神经网络的每个卷积层后添加CBAM模块。
下面是一个使用Keras实现CBAM注意力机制的示例代码:
```python
from keras.layers import Conv2D, Activation, Add, Lambda
def channel_attention(input_feature, ratio=8):
# 计算通道注意力权重
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
channel = input_feature._keras_shape[channel_axis]
shared_layer_one = Dense(channel//ratio,
activation='relu',
kernel_initializer='he_normal',
use_bias=True,
bias_initializer='zeros')
shared_layer_two = Dense(channel,
kernel_initializer='he_normal',
use_bias=True,
bias_initializer='zeros')
avg_pool = GlobalAveragePooling2D()(input_feature)
avg_pool = Reshape((1,1,channel))(avg_pool)
avg_pool = shared_layer_one(avg_pool)
avg_pool = shared_layer_two(avg_pool)
max_pool = GlobalMaxPooling2D()(input_feature)
max_pool = Reshape((1,1,channel))(max_pool)
max_pool = shared_layer_one(max_pool)
max_pool = shared_layer_two(max_pool)
cbam_feature = Add()([avg_pool,max_pool])
cbam_feature = Activation('sigmoid')(cbam_feature)
if K.image_data_format() == "channels_first":
cbam_feature = Permute((3, 1, 2))(cbam_feature)
return multiply([input_feature, cbam_feature])
def spatial_attention(input_feature):
# 计算空间注意力权重
kernel_size = 7
if K.image_data_format() == "channels_first":
channel = input_feature._keras_shape[1]
cbam_feature = Permute((2,3,1))(input_feature)
else:
channel = input_feature._keras_shape[-1]
cbam_feature = input_feature
avg_pool = Lambda(lambda x: K.mean(x, axis=3, keepdims=True))(cbam_feature)
max_pool = Lambda(lambda x: K.max(x, axis=3, keepdims=True))(cbam_feature)
concat = Concatenate(axis=3)([avg_pool, max_pool])
cbam_feature = Conv2D(filters = 1,
kernel_size=kernel_size,
strides=1,
padding='same',
activation='sigmoid',
kernel_initializer='he_normal',
use_bias=False)(concat)
if K.image_data_format() == "channels_first":
cbam_feature = Permute((3, 1, 2))(cbam_feature)
return multiply([input_feature, cbam_feature])
def cbam_block(cbam_feature,ratio=8):
# 定义CBAM模块
cbam_feature = channel_attention(cbam_feature,ratio)
cbam_feature = spatial_attention(cbam_feature)
return cbam_feature
```
可以在需要添加CBAM注意力机制的卷积层后添加CBAM模块,例如:
```python
input_data = Input(shape=(224, 224, 3))
x = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same')(input_data)
x = cbam_block(x)
x = Activation('relu')(x)
```
这样就可以在卷积神经网络中加入CBAM注意力机制。
阅读全文