机器人九宫格Python3语言实现, 基于贪心策略的q-le
时间: 2024-03-20 17:43:41 浏览: 156
九宫格问题是一个典型的路径规划问题,可以使用贪心策略和Q-learning算法进行解决。下面是一个简单的九宫格问题的Python3实现,使用了贪心策略和Q-learning算法:
```python
import random
class QLearningAgent:
def __init__(self, alpha, gamma, actions):
self.alpha = alpha
self.gamma = gamma
self.actions = actions
self.Q = {}
def getQ(self, state, action):
return self.Q.get((state, action), 0.0)
def learn(self, state, action, reward, value):
oldv = self.Q.get((state, action), None)
if oldv is None:
self.Q[(state, action)] = reward
else:
self.Q[(state, action)] = oldv + self.alpha * (value - oldv)
def chooseAction(self, state):
if random.random() < 0.5:
return random.choice(self.actions)
else:
Q = [self.getQ(state, a) for a in self.actions]
maxQ = max(Q)
if Q.count(maxQ) > 1:
best = [i for i in range(len(self.actions)) if Q[i] == maxQ]
i = random.choice(best)
else:
i = Q.index(maxQ)
return self.actions[i]
class Environment:
def __init__(self):
self.grid = [[1, 1, 1], [1, 0, 1], [1, 1, 1]]
self.current_state = (1, 1)
def reset(self):
self.current_state = (1, 1)
def move(self, action):
x, y = self.current_state
if action == "up":
x -= 1
elif action == "down":
x += 1
elif action == "left":
y -= 1
elif action == "right":
y += 1
if x < 0 or x >= 3 or y < 0 or y >= 3 or self.grid[x][y] == 0:
reward = -1
x, y = self.current_state
elif x == 0 and y == 2:
reward = 1
else:
reward = 0
self.current_state = (x, y)
return reward
def getState(self):
return self.current_state
def play(agent, env, episodes=1000, max_steps=100):
for episode in range(episodes):
env.reset()
state = env.getState()
for step in range(max_steps):
action = agent.chooseAction(state)
reward = env.move(action)
next_state = env.getState()
next_max = max([agent.getQ(next_state, a) for a in agent.actions])
agent.learn(state, action, reward, reward + agent.gamma * next_max)
state = next_state
if reward == 1:
break
if __name__ == "__main__":
env = Environment()
actions = ["up", "down", "left", "right"]
agent = QLearningAgent(alpha=0.5, gamma=0.9, actions=actions)
play(agent, env)
state = env.getState()
print("Final state:", state)
```
这个实现使用了一个QLearningAgent类来实现Q-learning算法,一个Environment类来实现九宫格问题的环境,以及一个play函数来控制整个游戏的流程。在play函数中,每个episode分为多个steps,在每个step中,agent选择一个action,然后将其带入环境中进行移动,得到reward和下一个state,然后更新Q值。最终,当agent达到终点时,游戏结束。
阅读全文