基于BP神经网络的PID控制算法 python
时间: 2023-07-12 14:23:21 浏览: 402
基于BP神经网络的PID控制器设计
以下是一个基于BP神经网络的PID控制算法Python代码示例:
```python
import numpy as np
class BP_PID:
def __init__(self, input_size, hidden_size, output_size, Kp, Ki, Kd, learning_rate):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.Kp = Kp
self.Ki = Ki
self.Kd = Kd
self.learning_rate = learning_rate
self.W1 = np.random.randn(input_size, hidden_size)
self.b1 = np.zeros((1, hidden_size))
self.W2 = np.random.randn(hidden_size, output_size)
self.b2 = np.zeros((1, output_size))
self.I = 0
self.D = 0
self.error_sum = 0
self.last_error = 0
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def forward(self, x):
self.hidden = self.sigmoid(np.dot(x, self.W1) + self.b1)
self.output = np.dot(self.hidden, self.W2) + self.b2
def backward(self, x, y, output):
error = y - output
self.error_sum += error
derivative = error - self.last_error
self.I = self.error_sum * self.Ki
self.D = derivative * self.Kd
self.last_error = error
d_output = error
d_hidden = np.dot(d_output, self.W2.T) * self.sigmoid_derivative(self.hidden)
self.W2 += self.learning_rate * np.dot(self.hidden.T, d_output)
self.b2 += self.learning_rate * np.sum(d_output, axis=0, keepdims=True)
self.W1 += self.learning_rate * np.dot(x.T, d_hidden)
self.b1 += self.learning_rate * np.sum(d_hidden, axis=0, keepdims=True)
def train(self, x, y):
self.forward(x)
self.backward(x, y, self.output)
def control(self, x):
self.forward(x)
error = 0 - self.output
control = self.Kp * error + self.I + self.D
return control
```
这个类实现了一个具有输入层、隐藏层和输出层的BP神经网络,可以用于PID控制问题。在训练时,我们使用反向传播算法来更新神经网络的权重和偏置,同时计算积分项和微分项。在控制时,我们使用当前输出与期望输出之间的误差来计算比例项,使用累积误差来计算积分项,使用当前误差与上一次误差之差来计算微分项,最终得到控制量。
阅读全文