def train(self) -> None: c = self._config print(c) step = 0 for epoch in range(c.epochs): prog_bar = tqdm(self._train_data_loader) for i, batch in enumerate(prog_bar): batch = batch[0].to(self._device) loss = self._step(batch) prog_bar.set_description(f'Train loss: {loss:.2f}') self._tensorboard.add_scalar('train/loss', loss, step) if i % c.visualization_interval == 0: self._visualize_images(batch, step, 'train') if i != 0 and i % c.snapshot_interval == 0: self._save_snapshot(step) step += 1
时间: 2024-02-10 13:23:00 浏览: 72
这是一个Python中的train函数,主要作用是训练一个AI模型。函数中的参数包括一个配置对象c,一个训练数据加载器_train_data_loader,以及一个设备对象_device。函数的具体流程如下:
1. 遍历若干个epochs,每个epoch表示将整个训练数据集遍历一遍。
2. 对于每个epoch,遍历训练数据加载器中的每个batch。
3. 对于每个batch,将其发送到设备_device上,并调用_step函数计算出loss。
4. 打印出当前训练的loss值,并将其保存到tensorboard中。
5. 如果符合可视化间隔的条件,则调用_visualize_images函数对当前batch进行可视化。
6. 如果符合快照间隔的条件,则调用_save_snapshot函数保存当前的模型快照。
7. step值加1,表示训练步骤数加1。
总之,该函数是一个训练AI模型的通用框架,可以根据具体应用场景进行相应的修改和扩展。
阅读全文