RuntimeError: mat1 and mat2 shapes cannot be multiplied (8x512 and 4x96)
时间: 2023-09-24 14:03:12 浏览: 84
这个错误是由于矩阵乘法中,两个矩阵的维度不匹配造成的。具体来说,mat1的维度为8x512,mat2的维度为4x96,这意味着mat1中的列数(512)与mat2中的行数(4)不匹配,无法进行矩阵乘法运算。要解决这个问题,你需要重新检查一下矩阵的维度,确保它们在进行矩阵乘法运算时是相互兼容的。如果需要,你可以调整矩阵的维度,或者使用其他的运算符进行计算。
相关问题
RuntimeError: mat1 and mat2 shapes cannot be multiplied (2x512 and 2x512)
这个错误通常是因为两个矩阵的维度不匹配,无法进行矩阵乘法运算。
例如,如果你有两个矩阵 A 和 B,A 的维度是 2x512,B 的维度是 2x512,那么你想要用 torch.mm(A, B) 计算它们的乘积,但是会出现以上的错误。
这个错误的原因在于矩阵乘法的规则是:对于两个矩阵 A 和 B,如果 A 的列数不等于 B 的行数,则无法进行矩阵乘法。
因此,你需要检查你的代码,确保两个矩阵的维度匹配,才能进行矩阵乘法运算。
RuntimeError: mat1 and mat2 shapes cannot be multiplied (64x512 and 25088x512)
This error occurs when trying to perform matrix multiplication between two matrices where the number of columns in the first matrix does not match the number of rows in the second matrix. In this case, mat1 has a shape of 64x512 and mat2 has a shape of 25088x512, so the multiplication cannot be performed.
To fix this error, you either need to reshape one of the matrices so that the number of columns in the first matrix matches the number of rows in the second matrix, or transpose one of the matrices so that their shapes match.
In the context of a machine learning model, this error may indicate that the input data and weight matrices are not compatible, and the model architecture or input data preprocessing may need to be revised.
阅读全文