1.利用Pytorch深度学习框架,根据yolov3的主干网络darknet53模型(参考下图),进行猫狗数据集的模型训练和模型推理,按下面要求完成相应代码。(76分) ①读入猫狗数据集(data_zoo),并进行必要的预处理 ②划分数据为训练集和测试集(比例自拟) ③在训练集中随机选取9张图片进行3行3列图像显示 ④构建卷积单元类封装ConvCell,由卷积、BN、Relu激活组成 ⑤参见附图,构建yolov3的主干网络类封装DarkNet53 ⑥进行前向传播 ⑦打印输出整体模型维度结构 ⑧正确合理使用损失函数和优化器 ⑨训练集数据进行模型训练,自拟合适的超参数 ⑩模型训练完毕后,打印输出训练集准确率 ⑪打印输出测试集准确率代码

时间: 2024-02-15 09:03:57 浏览: 75
ZIP

基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型.zip

为了满足您的需求,我将提供一个大致的代码框架,你可以参考这个框架进行具体的实现: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import numpy as np import matplotlib.pyplot as plt # 读入猫狗数据集 transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) trainset = torchvision.datasets.ImageFolder(root='data_zoo', transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=2) # 划分数据为训练集和测试集 trainset, testset = torch.utils.data.random_split(trainset, [8000, 2000]) trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=2) testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False, num_workers=2) # 随机选取9张图片进行3行3列图像显示 def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() dataiter = iter(trainloader) images, labels = dataiter.next() imshow(torchvision.utils.make_grid(images[:9])) # 构建卷积单元类封装ConvCell,由卷积、BN、Relu激活组成 class ConvCell(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding): super(ConvCell, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) self.bn = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x # 构建yolov3的主干网络类封装DarkNet53 class DarkNet53(nn.Module): def __init__(self): super(DarkNet53, self).__init__() self.conv1 = ConvCell(3, 32, kernel_size=3, stride=1, padding=1) self.conv2 = ConvCell(32, 64, kernel_size=3, stride=2, padding=1) self.res1 = nn.Sequential( ConvCell(64, 32, kernel_size=1, stride=1, padding=0), ConvCell(32, 64, kernel_size=3, stride=1, padding=1) ) self.conv3 = ConvCell(64, 128, kernel_size=3, stride=2, padding=1) self.res2 = nn.Sequential( ConvCell(128, 64, kernel_size=1, stride=1, padding=0), ConvCell(64, 128, kernel_size=3, stride=1, padding=1) ) self.conv4 = ConvCell(128, 256, kernel_size=3, stride=2, padding=1) self.res3 = nn.Sequential( ConvCell(256, 128, kernel_size=1, stride=1, padding=0), ConvCell(128, 256, kernel_size=3, stride=1, padding=1) ) self.conv5 = ConvCell(256, 512, kernel_size=3, stride=2, padding=1) self.res4 = nn.Sequential( ConvCell(512, 256, kernel_size=1, stride=1, padding=0), ConvCell(256, 512, kernel_size=3, stride=1, padding=1) ) self.conv6 = ConvCell(512, 1024, kernel_size=3, stride=2, padding=1) self.res5 = nn.Sequential( ConvCell(1024, 512, kernel_size=1, stride=1, padding=0), ConvCell(512, 1024, kernel_size=3, stride=1, padding=1) ) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.res1(x) + x x = self.conv3(x) x = self.res2(x) + x x = self.conv4(x) x = self.res3(x) + x x = self.conv5(x) x = self.res4(x) + x x = self.conv6(x) x = self.res5(x) + x return x # 进行前向传播 net = DarkNet53() inputs = torch.randn(1, 3, 224, 224) outputs = net(inputs) print(outputs.shape) # 打印输出整体模型维度结构 print(net) # 正确合理使用损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.001) # 训练集数据进行模型训练,自拟合适的超参数 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data[0], data[1] optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 模型训练完毕后,打印输出训练集准确率 correct = 0 total = 0 with torch.no_grad(): for data in trainloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the %d train images: %d %%' % (len(trainset), 100 * correct / total)) # 打印输出测试集准确率 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the %d test images: %d %%' % (len(testset), 100 * correct / total)) ``` 需要注意的是,由于猫狗数据集的大小和具体内容未知,因此具体代码实现可能会有所差异,但是按照上述步骤进行实现应该可以满足您的需求。
阅读全文

相关推荐

最新推荐

recommend-type

PyTorch版YOLOv4训练自己的数据集—基于Google Colab

在本文中,我们将探讨如何使用PyTorch在Google Colab上训练YOLOv4模型,以便处理自定义数据集。Google Colab是一个强大的在线环境,为机器学习爱好者和研究人员提供了丰富的资源,特别是免费的GPU支持,这对于运行...
recommend-type

pycharm下python使用yolov3/yolov3-tiny训练好的权重文件.weights进行行人检测,批量测试自定义文件夹下的图片并输出至指定文件夹

在本文中,我们将探讨如何在PyCharm环境下利用Python结合YOLOv3或YOLOv3-tiny模型,使用预先训练好的权重文件进行行人检测,并批量处理自定义文件夹中的图片,将检测结果输出到指定文件夹。这个过程对于目标识别和...
recommend-type

pytorch学习教程之自定义数据集

在PyTorch中,自定义数据集是深度学习模型训练的关键步骤,因为它允许你根据具体需求组织和处理数据。在本教程中,我们将探讨如何在PyTorch环境中创建自定义数据集,包括数据的组织、数据集类的定义以及使用`...
recommend-type

Pytorch加载部分预训练模型的参数实例

在深度学习领域,预训练模型通常是在大规模数据集上训练得到的,它们具有较好的权重初始化,可以加速新任务的学习过程并提升模型性能。PyTorch作为一个灵活且强大的深度学习框架,提供了加载预训练模型参数的功能,...
recommend-type

使用pytorch搭建AlexNet操作(微调预训练模型及手动搭建)

在PyTorch中,搭建AlexNet网络模型是一个常见的任务,特别是在迁移学习的场景下。AlexNet是一个深度卷积神经网络,最初在2012年的ImageNet大赛中取得了突破性的成绩,开启了深度学习在计算机视觉领域的广泛应用。在...
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。