请写出一个在MATLAB上运行的LSTM神经网络的代码,这个网络有11个输入量,1个输出量,学习率是0.01
时间: 2023-09-08 08:04:37 浏览: 110
### 回答1:
以下是MATLAB中实现LSTM神经网络的代码:net = network;
net.numInputs = 11;
net.numLayers = 3;
net.inputConnect = [1; 0; 0];
net.layerConnect = [0 0 0; 1 0 0; 0 1 0];
net.outputConnect = [0 0 1];
net.inputs{1}.size = 11;
net.layers{1}.size = 10;
net.layers{1}.transferFcn = 'logsig';
net.layers{2}.size = 5;
net.layers{2}.transferFcn = 'logsig';
net.layers{3}.size = 1;
net.layers{3}.transferFcn = 'purelin';
net.biases{1}.size = 10;
net.biases{2}.size = 5;
net.biases{3}.size = 1;
net.inputWeights{1,1}.size = [10 11];
net.layerWeights{2,1}.size = [5 10];
net.layerWeights{3,2}.size = [1 5];
net.learningRate = 0.01;
net.trainFcn = 'trainscg';
net.divideFcn = 'dividerand';
net.trainParam.showWindow = 0;
[net,tr] = train(net,inputs,targets);
### 回答2:
在MATLAB上运行LSTM神经网络的代码如下:
```MATLAB
% 为了复现结果,保持随机数生成器的状态相同
rng(0);
% 创建LSTM网络
inputSize = 11; % 输入层的大小
outputSize = 1; % 输出层的大小
hiddenSize = 10; % 隐含层的大小
net = lstmLayer(hiddenSize, 'OutputMode', 'sequence'); % 创建LSTM层
net = addLayers(net, fullyConnectedLayer(outputSize)); % 添加全连接层
net = connectLayers(net, hiddenSize+1, hiddenSize+2); % 连接LSTM和全连接层
% 设置训练参数
maxEpochs = 100; % 最大迭代次数
miniBatchSize = 10; % mini-batch的大小
learningRate = 0.01; % 学习率
% 生成示例数据
XTrain = randn(11,1000); % 输入数据
YTrain = randn(1,1000); % 输出数据
% 训练LSTM网络
numObservations = size(XTrain,2);
for epoch = 1:maxEpochs
idx = randperm(numObservations);
XTrain = XTrain(:,idx);
YTrain = YTrain(:,idx);
% 初始化梯度
grad = zeros(size(XTrain));
numBatches = floor(numObservations / miniBatchSize);
for i = 1:numBatches
idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
X = XTrain(:, idx);
Y = YTrain(:, idx);
% 首先前向传播
[gradients, loss] = dlfeval(@modelGradients, X, Y, net);
grad = grad + gradients;
% 更新网络参数
net = adamupdate(net, grad, learningRate);
end
end
% 定义模型梯度计算函数
function [gradients, loss] = modelGradients(X, Y, net)
[net, YPred] = forward(net, X);
loss = mean((YPred - Y).^2);
gradients = dlgradient(loss, net.LearnableParameters);
end
```
以上代码创建了一个包含11个输入量,1个输出量的LSTM神经网络,并设置学习率为0.01。模型使用adam优化器进行训练,共设置100个迭代次数和10的mini-batch大小。训练数据(XTrain和YTrain)在代码中用随机生成的示例数据替代。最后,定义了一个模型梯度计算函数,用于计算网络的梯度和损失。
阅读全文