一个MPI并行化遗传算法的案例程序 
时间: 2023-04-01 12:02:23 浏览: 53
我可以回答这个问题。MPI并行化遗传算法是一种用于解决优化问题的算法,它将遗传算法与MPI并行化技术相结合,可以加速算法的运行。以下是一个MPI并行化遗传算法的案例程序:
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define POP_SIZE 100
#define GEN_SIZE 100
#define MUTATION_RATE .01
#define CROSSOVER_RATE .8
#define ELITISM 1
typedef struct {
int fitness;
int genes[GEN_SIZE];
} Individual;
void init_population(Individual *population, int size) {
int i, j;
for (i = ; i < size; i++) {
population[i].fitness = ;
for (j = ; j < GEN_SIZE; j++) {
population[i].genes[j] = rand() % 2;
}
}
}
int evaluate_fitness(int *genes) {
int i, fitness = ;
for (i = ; i < GEN_SIZE; i++) {
fitness += genes[i];
}
return fitness;
}
void evaluate_population(Individual *population, int size) {
int i;
for (i = ; i < size; i++) {
population[i].fitness = evaluate_fitness(population[i].genes);
}
}
void mutate(Individual *individual) {
int i;
for (i = ; i < GEN_SIZE; i++) {
if ((double) rand() / RAND_MAX < MUTATION_RATE) {
individual->genes[i] = 1 - individual->genes[i];
}
}
}
void crossover(Individual *parent1, Individual *parent2, Individual *child1, Individual *child2) {
int i, crossover_point = rand() % GEN_SIZE;
for (i = ; i < crossover_point; i++) {
child1->genes[i] = parent1->genes[i];
child2->genes[i] = parent2->genes[i];
}
for (i = crossover_point; i < GEN_SIZE; i++) {
child1->genes[i] = parent2->genes[i];
child2->genes[i] = parent1->genes[i];
}
}
void select_parents(Individual *population, int size, Individual **parent1, Individual **parent2) {
int i, total_fitness = , roulette_wheel_position = rand() % total_fitness;
for (i = ; i < size; i++) {
total_fitness += population[i].fitness;
}
for (i = ; i < size; i++) {
roulette_wheel_position -= population[i].fitness;
if (roulette_wheel_position <= ) {
*parent1 = &population[i];
break;
}
}
roulette_wheel_position = rand() % total_fitness;
for (i = ; i < size; i++) {
roulette_wheel_position -= population[i].fitness;
if (roulette_wheel_position <= ) {
*parent2 = &population[i];
break;
}
}
}
void evolve_population(Individual *population, int size) {
int i, j;
Individual *parent1, *parent2, children[POP_SIZE - ELITISM];
for (i = ELITISM; i < POP_SIZE; i += 2) {
select_parents(population, size, &parent1, &parent2);
crossover(parent1, parent2, &children[i - ELITISM], &children[i - ELITISM + 1]);
mutate(&children[i - ELITISM]);
mutate(&children[i - ELITISM + 1]);
}
for (i = ELITISM, j = ; i < POP_SIZE; i++, j++) {
population[i] = children[j];
}
}
int main(int argc, char **argv) {
int rank, size, i;
Individual population[POP_SIZE];
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
srand(time(NULL) + rank);
init_population(population, POP_SIZE);
evaluate_population(population, POP_SIZE);
for (i = ; i < 100; i++) {
evolve_population(population, POP_SIZE);
evaluate_population(population, POP_SIZE);
}
MPI_Finalize();
return ;
}
相关推荐


















