最长公共子序列问题时间复杂度和空间复杂度
时间: 2023-12-18 11:07:11 浏览: 325
最长公共子序列问题
5星 · 资源好评率100%
最长公共子序列问题可以使用动态规划算法来解决。设字符串A和字符串B的长度分别为m和n,则该问题的时间复杂度为O(mn),空间复杂度为O(mn)。
具体来说,我们可以使用一个二维数组dp来记录字符串A和字符串B的最长公共子序列的长度。其中,dp[i][j]表示A中前i个字符和B中前j个字符的最长公共子序列的长度。而dp数组的计算过程可以通过以下递推公式完成:
当A[i] == B[j]时:dp[i][j] = dp[i-1][j-1] + 1
当A[i] != B[j]时:dp[i][j] = max(dp[i-1][j], dp[i][j-1])
最终,dp[m][n]即为A和B的最长公共子序列的长度。同时,我们还可以通过反向追踪dp数组来得到具体的最长公共子序列。
阅读全文