用python编写支持向量回归算法替换此代码np.linalg.inv(np.matmul(B.T, B)).dot(B.T).dot(A)
时间: 2024-05-09 17:15:12 浏览: 78
numpy linalg模块的具体使用方法
可以使用sklearn库中的SVR模型来实现支持向量回归。以下是一个简单的例子:
```python
from sklearn.svm import SVR
import numpy as np
# 生成数据
X = np.array([[0, 0], [2, 2]])
y = np.array([0.5, 2.5])
# 初始化SVR模型
svr = SVR(kernel='linear', C=1.0)
# 训练模型
svr.fit(X, y)
# 预测
X_test = np.array([[1, 1]])
y_pred = svr.predict(X_test)
print(y_pred)
```
其中,SVR中的kernel参数可以选择不同的核函数来适应不同的数据特征,C参数为正则化参数,控制模型的复杂度和拟合程度。
阅读全文