代码import serial import pywt import numpy as np import time # 接收数据 ser = serial.Serial('COM3', 115200) # 115200 是波特率 fi = 0 for turn in range(0, 3): # 设置接收数据轮次 n = 0 Sum = 0 m = 1000 dataset = [1 for i in range(1000)] while True: # 设置接收数据个数 n = n + 1 if n > 1000: break # 开始接收数据 data = ser.readline().strip() print(data.decode()) if n > 1: if abs(int.from_bytes(data, byteorder='little', signed=False) - int.from_bytes(dataset[n - 2], byteorder='little', signed=False)) >= 700: dataset[n-1] = dataset[n-2] else: dataset[n-1] = data # 使用小波分析进行阈值去噪声 w = pywt.Wavelet('db8') # 用Daubechies8小波 maxlev = pywt.dwt_max_level(len(dataset), w.dec_len) # 最大分解的阶数 # print("The maximum level is " + str(maxlev)) threshold = 0.5 # 阈值滤波 coeffs = pywt.wavedec(dataset, 'db8', level=maxlev) # 将信号进行小波分解 for i in range(1, len(coeffs)): coeffs[i] = pywt.threshold(coeffs[i], threshold * max(coeffs[i])) # 将噪声滤波 datarec = pywt.waverec(coeffs, 'db8') # 对信号重构 # print(str(datarec)) fi = datarec + fi print("The final result data is " + str(sum(datarec)/len(datarec))) print("average is " + str(sum(fi)/len(fi) / 3))有报错Traceback (most recent call last): File "C:/Users/86138/Desktop/光设校赛/main.py", line 23, in <module> if abs(int.from_bytes(data, byteorder='little', signed=False) - int.from_bytes(dataset[n - 2], byteorder='little', TypeError: cannot convert 'int' object to bytes
时间: 2024-01-28 18:03:03 浏览: 69
这个错误是因为在第23行代码中,你尝试使用 `int.from_bytes()` 函数将一个整数转换为字节,但是该函数只能将字节转换为整数。你应该将 `dataset` 中的数据从字节转换为整数,然后再进行比较。可以使用 `int()` 函数将字节转换为整数,例如将第23行代码修改为:
```
if abs(int.from_bytes(data, byteorder='little', signed=False) - int(dataset[n - 2])) >= 700:
```
同时,你需要注意 `dataset` 列表的数据类型,应该是整数类型而不是字节类型。可以使用以下代码初始化 `dataset`:
```
dataset = [1 for i in range(1000)]
```
另外,你需要确保在接收数据时,每次接收到的数据都是字节类型。
相关问题
import serial import pywt import numpy as np import time # 接收数据 ser = serial.Serial('COM3', 115200) # 115200 是波特率 fi = 0 for turn in range(0, 3): # 设置接收数据轮次 n = 0 Sum = 0 m = 1000 dataset = [1 for i in range(1000)] while True: # 设置接收数据个数 n = n + 1 if n > 1000: break # 开始接收数据 data = ser.readline().strip() # print(data.decode()) if n > 1: if abs(float(data) - float(dataset[n - 2])) < 700: dataset[n-1] = dataset[n-2] else: dataset[n-1] = data # 使用小波分析进行阈值去噪声 w = pywt.Wavelet('db8') # 用Daubechies8小波 maxlev = pywt.dwt_max_level(len(dataset), w.dec_len) # 最大分解的阶数 # print("The maximum level is " + str(maxlev)) threshold = 0.5 # 阈值滤波 coeffs = pywt.wavedec(dataset, 'db8', level=maxlev) # 将信号进行小波分解 for i in range(1, len(coeffs)): coeffs[i] = pywt.threshold(coeffs[i], threshold * max(coeffs[i])) # 将噪声滤波 datarec = pywt.waverec(coeffs, 'db8') # 对信号重构 # print(str(datarec)) fi = datarec + fi print("The final result data is " + str(sum(datarec)/len(datarec))) print("average is " + str(sum(fi)/len(fi) / 3))有报错 if abs(float(data) - float(dataset[n - 2])) < 700: ValueError: could not convert string to float: b'1850035.62500\x00'
这个报错的原因可能是因为从串口接收到的数据是一个带有字节格式的字符串,无法用float()函数直接转换。你需要先将字节格式的字符串转换成普通的字符串,再进行转换。你可以使用decode()函数将字节格式的字符串转化为普通的字符串,例如:`if abs(float(data.decode()) - float(dataset[n - 2])) < 700:`。另外,你需要注意,串口接收到的数据可能带有一些无关字符,需要进行去除,例如使用strip()函数。
import wfdb import pywt import numpy as np from matplotlib import pyplot as plt from scipy import signal # 加载数据 record = wfdb.rdrecord('D:/下载/ptb-xl-a-large-publicly-available-electrocardiography-dataset-1.0.3/records100/00000/00001_lr') signal = record.p_signal[:, 0] # 取第一列信号 fs = record.fs # 采样率 # 小波滤波 w = 'db4' # 选用Daubechies4小波 level = 6 # 小波分解层数 coeffs = pywt.wavedec(signal, w, level=level) for i in range(1, level+1): coeffs[i] = pywt.threshold(coeffs[i], np.std(coeffs[i])/2)# 阈值为标准差的一半 filtered_signal = pywt.waverec(coeffs, w) # 去除基线漂移 baseline = signal - filtered_signal filtered_signal += np.mean(baseline) # 去除工频干扰 notch_freq_Hz = np.array([50.0]) # 工频干扰频率为50Hz for freq_Hz in np.nditer(notch_freq_Hz): bp_stop_Hz = freq_Hz + 3.0 * np.array([-1, 1]) b, a = signal.butter(3, bp_stop_Hz / (fs / 2.0), 'bandstop') filtered_signal = signal.lfilter(b, a, filtered_signal) # 绘制图像 plt.figure(figsize=(10, 5)) plt.plot(signal, label='Original') plt.plot(filtered_signal, label='Filtered') plt.title('Filtered Signal') plt.xlabel('Sample')代码如上,出现错误
您未在使用`signal`模块的函数时使用正确的完整名称。在您的代码中,您将`signal`模块导入为`from scipy import signal`,但在代码中您使用了`signal.butter`和`signal.lfilter`,这将导致名称冲突并引发错误。
为了解决这个问题,您可以尝试以下两个解决方案之一:
1. 在使用`signal`模块的函数时使用完整的模块名称。例如,您可以将以下代码:
```
b, a = signal.butter(3, bp_stop_Hz / (fs / 2.0), 'bandstop')
filtered_signal = signal.lfilter(b, a, filtered_signal)
```
更改为:
```
b, a = scipy.signal.butter(3, bp_stop_Hz / (fs / 2.0), 'bandstop')
filtered_signal = scipy.signal.lfilter(b, a, filtered_signal)
```
2. 重命名您的导入语句。例如,您可以将以下代码:
```
from scipy import signal
```
更改为:
```
import scipy.signal as sig
```
然后在使用`signal`模块的函数时使用`sig`作为前缀。例如,您可以将以下代码:
```
b, a = signal.butter(3, bp_stop_Hz / (fs / 2.0), 'bandstop')
filtered_signal = signal.lfilter(b, a, filtered_signal)
```
更改为:
```
b, a = sig.butter(3, bp_stop_Hz / (fs / 2.0), 'bandstop')
filtered_signal = sig.lfilter(b, a, filtered_signal)
```
希望这些解决方案可以帮助您解决问题。
阅读全文