def read_file(): result=[] with open("pythom.py") as fin: for line in fin: line = line[:-1] result.append(line.split(",")) return result

时间: 2023-06-12 09:04:15 浏览: 98
这段代码的作用是读取文件 "pythom.py",将每一行按照逗号分隔成一个列表,并将所有列表存储在一个大的列表中,最后返回这个大列表。 具体来说,代码首先创建一个空列表 result。然后使用 with 语句打开文件 "pythom.py",并使用 for 循环遍历文件的每一行。在循环体中,代码将每一行的最后一个字符(也就是换行符 \n)去掉,然后使用 split 方法将这一行按照逗号分隔成一个列表,并将这个列表添加到 result 列表中。最后,代码返回 result 列表。 需要注意的是,如果文件中某一行没有逗号,那么这一行将被分隔成只有一个元素的列表。另外,如果文件中某一行以逗号结尾,那么分隔后最后一个元素将是一个空字符串。
相关问题

def get_cve_data(project_type="java"): cve_data = None if project_type == "java": cve_data = getattr(g, '_java_cve_data', None) if cve_data is None: with open(java_vul_fixing_file) as fin: cve_data = g._java_cve_data = json.load(fin) elif project_type == "c": cve_data = getattr(g, '_c_cve_data', None) if cve_data is None: with open(c_vul_fixing_file) as fin: cve_data = g._c_cve_data = json.load(fin) return cve_data

这段代码定义了一个名为 `get_cve_data` 的函数,用于获取特定项目类型的 CVE 数据。函数接受一个可选的参数 `project_type`,默认值为 `"java"`。 函数首先定义了一个变量 `cve_data` 并将其初始化为 `None`。然后,根据 `project_type` 的值,它会从全局对象 `g` 中获取对应项目类型的 CVE 数据。如果 `cve_data` 为 `None`,则说明还没有加载过该项目类型的数据,函数会从相应的文件中读取 JSON 数据,并将其保存到 `g` 对象中。 最后,函数返回获取到的 CVE 数据。 这段代码假设在全局对象 `g` 中存在用于存储 Java 和 C 项目的 CVE 数据的属性 `_java_cve_data` 和 `_c_cve_data`。它还假设有两个文件路径 `java_vul_fixing_file` 和 `c_vul_fixing_file` 分别指向存储 Java 和 C 项目的 CVE 数据的 JSON 文件。 你可以根据需要,修改文件路径和属性名称以适应你的代码结构和数据存储方式。

解释下面这段代码 def load_vocab(txt_path): """加载文本映射字典""" vocabulary = [] with open(txt_path, 'r') as fin: for line in fin: arr = line.strip().split() assert len(arr) == 2 vocabulary.append(arr[0]) return vocabulary model_path = "offline_encoder.om" vocab_path = 'vocab.txt' model = WeNetASR(model_path, vocab_path) wav_file = 'sample.wav' IPython.display.Audio(wav_file) txt = model.transcribe(wav_file) print(txt)

这段代码主要是使用WeNetASR模型对音频文件进行语音识别,并输出识别结果。具体来说,代码中首先定义了一个load_vocab函数,用于加载文本映射字典。load_vocab函数接受一个txt_path参数,表示文本映射字典的路径。该函数读取文本映射字典文件,将每一行的第一个单词加入到vocabulary列表中,并返回vocabulary列表。 接下来,定义了model_path和vocab_path两个变量,分别表示模型文件路径和文本映射字典文件路径。然后,使用WeNetASR类构建了一个ASR模型对象model。WeNetASR类是一个基于WeNet框架的ASR模型,可以用于语音识别任务。 接下来,定义了wav_file变量,表示待识别音频文件的路径。然后,使用IPython.display.Audio函数将音频文件可视化,方便用户进行验证。 最后,使用model.transcribe方法对音频文件进行语音识别,得到识别结果txt,并输出到控制台。
阅读全文

相关推荐

Error processing line 1 of D:\Anaconda\envs\Train\lib\site-packages\matplotlib-3.7.1-py3.9-nspkg.pth: Fatal Python error: init_import_site: Failed to import the site module Python runtime state: initialized Traceback (most recent call last): File "D:\Anaconda\envs\Train\lib\site.py", line 169, in addpackage exec(line) File "<string>", line 1, in <module> File "D:\Anaconda\envs\Train\lib\importlib\util.py", line 2, in <module> from . import abc File "D:\Anaconda\envs\Train\lib\importlib\abc.py", line 17, in <module> from typing import Protocol, runtime_checkable File "D:\Anaconda\envs\Train\lib\typing.py", line 26, in <module> import re as stdlib_re # Avoid confusion with the re we export. File "E:\fin\re.py", line 2, in <module> from repair import Ui_MainWindow File "E:\fin\repair.py", line 11, in <module> from PyQt5 import QtCore, QtGui, QtWidgets File "D:\Anaconda\envs\Train\lib\site-packages\PyQt5\__init__.py", line 20, in <module> __path__ = __import__('pkgutil').extend_path(__path__, __name__) File "D:\Anaconda\envs\Train\lib\pkgutil.py", line 643, in <module> _NAME_PATTERN = re.compile(f'^(?P{_DOTTED_WORDS})(?P<cln>:(?P<obj>{_DOTTED_WORDS})?)?$', re.U) AttributeError: partially initialized module 're' has no attribute 'compile' (most likely due to a circular import) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\Anaconda\envs\Train\lib\site.py", line 589, in <module> main() File "D:\Anaconda\envs\Train\lib\site.py", line 576, in main known_paths = addsitepackages(known_paths) File "D:\Anaconda\envs\Train\lib\site.py", line 359, in addsitepackages addsitedir(sitedir, known_paths) File "D:\Anaconda\envs\Train\lib\site.py", line 208, in addsitedir addpackage(sitedir, name, known_paths) File "D:\Anaconda\envs\Train\lib\site.py", line 179, in addpackage import traceback File "D:\Anaconda\envs\Train\lib\traceback.py", line 5, in <module> import linecache File "D:\Anaconda\envs\Train\lib\linecache.py", line 11, in <module> import tokenize File "D:\Anaconda\envs\Train\lib\tokenize.py", line 32, in <module> import re File "E:\fin\re.py", line 2, in <module> from repair import Ui_MainWindow File "E:\fin\repair.py", line 11, in <module> from PyQt5 import QtCore, QtGui, QtWidgets File "D:\Anaconda\envs\Train\lib\site-packages\PyQt5\__init__.py", line 20, in <module> __path__ = __import__('pkgutil').extend_path(__path__, __name__) File "D:\Anaconda\envs\Train\lib\pkgutil.py", line 6, in <module> import importlib.util File "D:\Anaconda\envs\Train\lib\importlib\util.py", line 2, in <module> from . import abc File "D:\Anaconda\envs\Train\lib\importlib\abc.py", line 17, in <module> from typing import Protocol, runtime_checkable File "D:\Anaconda\envs\Train\lib\typing.py", line 2245, in <module> Pattern = _alias(stdlib_re.Pattern, 1) AttributeError: partially initialized module 're' has no attribute 'Pattern' (most likely due to a circular import)

最新推荐

recommend-type

Mysql中FIND_IN_SET()和IN区别简析

在MySQL数据库中,`FIND_IN_SET()` 和 `IN` 是两种不同的查询方法,它们在处理数据集时有不同的特性和应用场景。本文将对这两种方法进行详细对比,以帮助理解它们之间的差异。 `FIND_IN_SET()` 函数主要用于在一个...
recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自