U-net实现RGB图像重构高光谱图像代码
时间: 2023-11-06 11:21:11 浏览: 193
以下是一个简单的U-Net实现RGB图像重构高光谱图像的代码示例,使用的是PyTorch框架:
```python
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
"""双层卷积模块"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class Up(nn.Module):
"""上采样模块"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = nn.functional.pad(x1, [diffX // 2, diffX - diffX//2, diffY // 2, diffY - diffY//2])
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class UNet(nn.Module):
"""U-Net模型"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = DoubleConv(in_channels, 64)
self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = DoubleConv(64, 128)
self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = DoubleConv(128, 256)
self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv4 = DoubleConv(256, 512)
self.maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5 = DoubleConv(512, 1024)
self.up1 = Up(1024, 512)
self.up2 = Up(512, 256)
self.up3 = Up(256, 128)
self.up4 = Up(128, 64)
self.out = nn.Conv2d(64, out_channels, kernel_size=1)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.maxpool1(x1)
x2 = self.conv2(x2)
x3 = self.maxpool2(x2)
x3 = self.conv3(x3)
x4 = self.maxpool3(x3)
x4 = self.conv4(x4)
x5 = self.maxpool4(x4)
x5 = self.conv5(x5)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
x = self.out(x)
return x
```
使用U-Net模型进行RGB图像重构高光谱图像的训练和测试代码示例:
```python
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from dataset import CustomDataset
# 加载数据集
transform = transforms.Compose([
transforms.ToTensor()
])
dataset = CustomDataset(transform=transform)
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
# 定义U-Net模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = UNet(in_channels=3, out_channels=30).to(device)
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
for inputs, targets in train_loader:
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# 测试模型
test_input = torch.rand(1, 3, 256, 256).to(device)
with torch.no_grad():
test_output = model(test_input)
print(test_output.shape)
```
需要注意的是,以上代码中使用的`CustomDataset`是自定义的数据集类,需要根据实际情况进行修改。同时,由于高光谱图像的通道数较多,为了简化示例代码,将输出通道数设置为30,实际应用中需要根据数据集的实际情况进行调整。
阅读全文