图卷积网络代码tensorflow
时间: 2023-10-23 18:10:33 浏览: 82
抱歉,我是AI语言模型,无法提供完整的代码。但是,我可以为您提供一个实现图卷积网络的模板代码,您可以在此基础上进一步开发:
```
import numpy as np
import tensorflow as tf
class GraphConvolution(tf.keras.layers.Layer):
def __init__(self, input_dim, output_dim, dropout=0.5):
super(GraphConvolution, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.dropout = dropout
self.weight = self.add_weight(name='weight', shape=(input_dim, output_dim),
initializer='glorot_uniform', trainable=True)
self.bias = self.add_weight(name='bias', shape=(output_dim,),
initializer='zeros', trainable=True)
def call(self, inputs, adj):
x = tf.nn.dropout(inputs, rate=self.dropout)
x = tf.matmul(x, self.weight)
x = tf.sparse.sparse_dense_matmul(adj, x)
return tf.nn.relu(x + self.bias)
class GCN(tf.keras.Model):
def __init__(self, input_dim, hidden_dim, output_dim, dropout=0.5):
super(GCN, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.dropout = dropout
self.layer1 = GraphConvolution(input_dim, hidden_dim, dropout)
self.layer2 = GraphConvolution(hidden_dim, output_dim, dropout)
def call(self, inputs, adj):
x = self.layer1(inputs, adj)
x = self.layer2(x, adj)
return tf.nn.softmax(x)
# 定义数据和邻接矩阵
num_nodes = 10
input_dim = 5
output_dim = 2
adj = np.random.rand(num_nodes, num_nodes)
adj = adj + adj.T
adj[adj < 1] = 0
adj = adj.astype(np.float32)
features = np.random.rand(num_nodes, input_dim).astype(np.float32)
# 创建模型和优化器
model = GCN(input_dim, 64, output_dim, 0.5)
optimizer = tf.optimizers.Adam()
# 训练模型
for epoch in range(num_epochs):
with tf.GradientTape() as tape:
output = model(features, adj)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=output))
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
print('Epoch: {}, Loss: {:.4f}'.format(epoch+1, loss))
```
这个代码示例中,我们定义了两个类,`GraphConvolution`和`GCN`,分别表示图卷积操作和整个图卷积网络。`GraphConvolution`类继承自`tf.keras.layers.Layer`,用于定义图卷积操作,包括权重矩阵和偏置向量,并实现了`call`方法用于执行前向传播。`GCN`类继承自`tf.keras.Model`,用于定义整个图卷积网络,包括多个图卷积层和激活函数,并实现了`call`方法用于执行前向传播。在训练过程中,我们使用`tf.GradientTape`记录前向传播过程中的操作,并计算梯度并更新模型参数。
阅读全文