import pandas as pd import matplotlib.pyplot as plot raw_data = pd.read_csv(r'/Users/wangruihan/Desktop/time_series_covid19_confirmed_global.csv',na_values='?') #设定'?'为缺失值 #查看有哪些列 print(raw_data.columns) #查看前几行数据 print(raw_data[:10]) #检查含有缺失值的列 print(raw_data.isnull().any() ) print(raw_data.shape) #缺失值处理 print(raw_data[raw_data.isnull().values==True]) fill_na = lambda col:col.fillna('not know')#定义fill_na函数,用'not know'字符串填充缺失值 fill_data = raw_data.apply(fill_na, axis=0) #将填充后的数据赋给fill_data print(fill_data.isnull().any()) #检查是否填充成功 isDuplicated=fill_data.duplicated() #判断重复数据记录 print(isDuplicated) #初步了解数据构成 print(fill_data[fill_data['Country/Region']=='China']) data = fill_data.drop(['Province/State','Lat','Long'],axis=1) #删除属性列 data = data.groupby('Country/Region').sum() # 按Country/Region并求和 print(data.index.values) #列出全部可索引的Country/Region名称 data_us = data[data.index.isin(['US','China','United Kingdom','Italy','Germany','France'])] print(data_us) data_us.T.plot(figsize=(15,7)) #数据趋势图 最后数据趋势图不显示怎么办
时间: 2024-02-11 19:07:13 浏览: 97
pandas中read_csv的缺失值处理方式
如果你在Jupyter Notebook中运行这段代码并且没有看到数据趋势图,则可以在代码的最后加上`plt.show()`命令,如下所示:
```
data_us.T.plot(figsize=(15,7))
plt.show()
```
这个命令将显示图表并将其添加到Jupyter Notebook中。请注意,你需要首先导入matplotlib库,使用`import matplotlib.pyplot as plt`命令。
阅读全文