def max_sum(n, grid): dp = [[0] * n for _ in range(n)] dp[0][0] = grid[0][0] for i in range(1, n): dp[0][i] = dp[0][i-1] + grid[0][i] for i in range(1, n): dp[i][0] = dp[i-1][0] + grid[i][0] for i in range(1, n): for j in range(1, n): dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + grid[i][j] return dp[n-1][n-1] n = 3 grid = [[1, 3, 1], [1, 5, 1], [4, 2, 1]] print(max_sum(n, grid)) 该段代码的所选实验项目给定的已知 、求解目标 、条件 、数学建模(用数学符号表示给定的已知、求解目标和相关条件) 、逻辑结构(线性、非线性) 、存储结构(连续、离散) 、具体到自己所选用的实验平台,所选数据结构的描述方式 、数据结构的初始化 、算法描述(选用自然语言、伪码、流程图或程序设计语言的任何一种描述算法)、算法结果分析、时间复杂度分析、空间复杂度分析 、 结论及优化改进
时间: 2023-09-19 16:07:04 浏览: 106
所选实验项目:方格取数问题的动态规划求解
已知:一个 $n \times n$ 的方格矩阵,每个格子里有一个整数。
求解目标:从左上角开始,每次只能向下或向右走一步,走过的格子里的数字累加起来,求从左上角走到右下角,所有可能的路径中,数字之和的最大值。
条件:每次只能向下或向右走一步。
数学建模:设 $dp[i][j]$ 表示从左上角走到 $(i,j)$ 位置的所有路径中,数字之和的最大值。
则有状态转移方程:$dp[i][j] = \max(dp[i-1][j], dp[i][j-1]) + grid[i][j]$,其中 $grid[i][j]$ 表示第 $i$ 行第 $j$ 列的数值。
逻辑结构:非线性。
存储结构:二维列表。
具体到 Python 实现:
1. 数据结构的初始化:
```python
dp = [[0] * n for _ in range(n)]
dp[0][0] = grid[0][0]
for i in range(1, n):
dp[0][i] = dp[0][i-1] + grid[0][i]
for i in range(1, n):
dp[i][0] = dp[i-1][0] + grid[i][0]
```
2. 算法描述:
```python
for i in range(1, n):
for j in range(1, n):
dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + grid[i][j]
return dp[n-1][n-1]
```
3. 算法结果分析:返回 $dp[n-1][n-1]$,即从左上角走到右下角的最大数字之和。
4. 时间复杂度分析:三重循环,设 $n$ 为矩阵的大小,则时间复杂度为 $O(n^2)$。
5. 空间复杂度分析:使用了一个二维列表 $dp$,大小为 $n \times n$,因此空间复杂度为 $O(n^2)$。
6. 结论及优化改进:该算法可以求解方格取数问题,时间复杂度为 $O(n^2)$,空间复杂度为 $O(n^2)$。在实际应用中,可以通过优化空间复杂度来降低算法的空间占用,例如只使用一维列表存储状态转移过程中的中间结果。
阅读全文