lpips的python代码
时间: 2023-07-10 17:05:13 浏览: 116
感知相似度:LPIPS指标。 点安装lpips
以下是使用PyTorch实现的LPIPS(Learned Perceptual Image Patch Similarity)的Python代码:
```python
import torch
import torch.nn as nn
class LPIPS(nn.Module):
def __init__(self, net='alex', version='0.1'):
super(LPIPS, self).__init__()
self.version = version
self.net = nn.Sequential(*list(self.get_net(net)))
def get_net(self, net):
if net == 'alex':
net = [
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.AdaptiveAvgPool2d(output_size=(6, 6)),
nn.Conv2d(256, 4096, kernel_size=6),
nn.ReLU(inplace=True),
nn.Conv2d(4096, 4096, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(4096, 1, kernel_size=1)
]
elif net == 'vgg':
net = [
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.AdaptiveAvgPool2d(output_size=(7, 7)),
nn.Conv2d(512, 4096, kernel_size=7),
nn.ReLU(inplace=True),
nn.Conv2d(4096, 4096, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(4096, 1, kernel_size=1)
]
else:
raise ValueError('Invalid network specified.')
return net
def forward(self, x, y):
x = (x + 1) / 2
y = (y + 1) / 2
if self.version == '0.1':
distances = []
for i in range(x.shape[0]):
d = 0
for j in range(x.shape[1]):
d += torch.norm(x[i, j] - y[i, j], p=2)
distances.append(d)
distances = torch.stack(distances)
elif self.version == '0.2':
distances = self.net(torch.cat((x, y), dim=1)).squeeze()
else:
raise ValueError('Invalid version specified.')
return distances
```
使用方法:
```python
import torch
from lpips import LPIPS
model = LPIPS(net='alex', version='0.1')
x = torch.randn(1, 3, 256, 256)
y = torch.randn(1, 3, 256, 256)
distance = model(x, y)
```
阅读全文