共轭梯度matlab代码
时间: 2023-07-09 10:50:05 浏览: 79
基于改进的共轭梯度法实现双变量优化求解附matlab代码.zip
下面是一个简单的共轭梯度算法的 MATLAB 代码示例:
```matlab
function [x, flag, relres, iter] = cg(A, b, x0, tol, maxiter)
% Conjugate Gradient Algorithm
% Solves the system of linear equations Ax = b
% A: matrix of size nxn
% b: column vector of size nx1
% x0: initial guess for x
% tol: tolerance for stopping criterion
% maxiter: maximum number of iterations
n = size(A, 1);
x = x0;
r = b - A * x;
p = r;
normb = norm(b);
for iter = 1:maxiter
Ap = A * p;
alpha = (r' * r) / (p' * Ap);
x = x + alpha * p;
rprev = r;
r = r - alpha * Ap;
beta = (r' * r) / (rprev' * rprev);
p = r + beta * p;
relres = norm(r) / normb;
if relres < tol
flag = 0;
return;
end
end
flag = 1; % If we reach here, we have not converged within maxiter iterations
end
```
其中,`A` 是矩阵,`b` 是列向量,`x0` 是初始值,`tol` 是停止准则,`maxiter` 是最大迭代次数。函数返回 `x`,`flag`,`relres`,`iter`。`flag` 是标志变量,如果 `flag` 等于 0,则表示算法已经收敛,否则表示算法未能在最大迭代次数内收敛。`relres` 是相对残差,`iter` 是实际迭代次数。
使用示例:
```matlab
% Define matrix and vector
n = 100;
A = gallery('tridiag', n, -1, 2, -1);
b = ones(n, 1);
% Solve the system using CG
x0 = zeros(n, 1);
tol = 1e-6;
maxiter = 1000;
[x, flag, relres, iter] = cg(A, b, x0, tol, maxiter);
% Print results
if flag == 0
fprintf('CG converged in %d iterations.\n', iter);
fprintf('Relative residual: %e\n', relres);
else
fprintf('CG did not converge in %d iterations.\n', maxiter);
end
```
其中,`gallery` 函数用于创建三对角矩阵。
阅读全文