使用python生成用Apriori算法挖掘频繁项集的代码
时间: 2024-05-07 17:16:28 浏览: 101
Apriori算法挖掘频繁项集
可以的,以下是用Python实现Apriori算法来挖掘频繁项集的简单代码:
```python
def loadDataSet():
return [[1,3,4],[2,3,5],[1,2,3,5],[2,5]]
def createC1(dataSet):
C1 = []
for transaction in dataSet:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort()
return list(map(frozenset, C1))
def scanD(D, Ck, minSupport):
ssCnt = {}
for tid in D:
for can in Ck:
if can.issubset(tid):
if can not in ssCnt: ssCnt[can]=1
else: ssCnt[can] += 1
numItems = float(len(D))
retList = []
supportData = {}
for key in ssCnt:
support = ssCnt[key]/numItems
if support >= minSupport:
retList.insert(0,key)
supportData[key] = support
return retList, supportData
def aprioriGen(Lk, k):
retList = []
lenLk = len(Lk)
for i in range(lenLk):
for j in range(i+1, lenLk):
L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
L1.sort(); L2.sort()
if L1==L2:
retList.append(Lk[i] | Lk[j])
return retList
def apriori(dataSet, minSupport = 0.5):
C1 = createC1(dataSet)
D = list(map(set, dataSet))
L1, supportData = scanD(D, C1, minSupport)
L = [L1]
k = 2
while (len(L[k-2]) > 0):
Ck = aprioriGen(L[k-2], k)
Lk, supK = scanD(D, Ck, minSupport)
supportData.update(supK)
L.append(Lk)
k += 1
return L, supportData
```
希望对你有所帮助!~
阅读全文