opencv(C++)实现相机畸变矫正

时间: 2023-07-07 09:33:44 浏览: 84
实现相机畸变矫正可以通过以下步骤: 1. 获取相机的内参和畸变系数; 2. 读取待校正的图像; 3. 进行畸变矫正。 具体实现代码如下: ```c++ #include <opencv2/opencv.hpp> using namespace cv; int main() { // 1. 获取相机的内参和畸变系数 Mat cameraMatrix = (Mat_<double>(3, 3) << 1000, 0, 640, 0, 1000, 480, 0, 0, 1); Mat distCoeffs = (Mat_<double>(1, 5) << 0.1, 0.01, 0, 0, -0.01); // 2. 读取待校正的图像 Mat src = imread("test.jpg"); // 3. 进行畸变矫正 Mat undistorted; undistort(src, undistorted, cameraMatrix, distCoeffs); // 显示结果 imshow("src", src); imshow("undistorted", undistorted); waitKey(); return 0; } ``` 其中,`cameraMatrix` 表示相机的内参矩阵,`distCoeffs` 表示相机的畸变系数。`undistort` 函数会自动根据内参和畸变系数对图像进行矫正,矫正后的图像保存在 `undistorted` 中。
相关问题

C++ OpenCV实现双目相机标定

双目相机标定是计算机视觉中的一个重要步骤,它可以通过计算双目相机之间的相对位置和姿态,将两个相机的图像进行联合,实现三维重构和深度测量等功能。OpenCV提供了一套完整的双目相机标定工具,下面是一个简单的标定流程: 1.采集双目图像数据,包括左右相机的内参矩阵、畸变系数、图像尺寸等信息; 2.通过对图像数据进行预处理,包括去畸变、矫正等操作,使得标定结果更加精确; 3.提取双目图像中的特征点,并进行匹配,计算出左右相机之间的基础矩阵和本质矩阵; 4.通过标定板上的特征点的三维坐标和它们在相机图像中的对应点的二维坐标,计算出左右相机之间的外参矩阵; 5.对标定结果进行评估,包括重投影误差、立体重建误差等指标,以判断标定结果的准确性和可靠性。 下面是一个基于OpenCV的双目相机标定示例代码: ```c #include <opencv2/opencv.hpp> #include <iostream> #include <vector> using namespace cv; using namespace std; int main() { //读取标定板图像 vector<vector<Point3f>> objectPoints; //标定板上的三维坐标 vector<vector<Point2f>> imagePoints1, imagePoints2; //左右相机上对应的二维图像点 Size imageSize; //图像尺寸 Mat cameraMatrix1, distCoeffs1; //左相机内参矩阵和畸变系数 Mat cameraMatrix2, distCoeffs2; //右相机内参矩阵和畸变系数 Mat R, T, E, F; //左右相机之间的旋转矩阵、平移矩阵、本质矩阵、基础矩阵 //设置标定板参数 Size boardSize(9, 6); //标定板内部角点数目 float squareSize = 30; //标定板内部边长,单位毫米 //生成标定板上的三维坐标 vector<Point3f> corners; for (int i = 0; i < boardSize.height; i++) { for (int j = 0; j < boardSize.width; j++) { corners.push_back(Point3f(j * squareSize, i * squareSize, 0)); } } //读取标定板图像 vector<String> filenames1, filenames2; glob("left/*.jpg", filenames1); //左相机图像文件夹 glob("right/*.jpg", filenames2); //右相机图像文件夹 for (int i = 0; i < filenames1.size(); i++) { Mat image1 = imread(filenames1[i]); Mat image2 = imread(filenames2[i]); imageSize = image1.size(); //提取标定板上的角点 vector<Point2f> corners1, corners2; bool found1 = findChessboardCorners(image1, boardSize, corners1); bool found2 = findChessboardCorners(image2, boardSize, corners2); if (found1 && found2) { //亚像素精确化角点位置 Mat gray1, gray2; cvtColor(image1, gray1, COLOR_BGR2GRAY); cvtColor(image2, gray2, COLOR_BGR2GRAY); cornerSubPix(gray1, corners1, Size(11, 11), Size(-1, -1), TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 30, 0.1)); cornerSubPix(gray2, corners2, Size(11, 11), Size(-1, -1), TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 30, 0.1)); //保存角点坐标 objectPoints.push_back(corners); imagePoints1.push_back(corners1); imagePoints2.push_back(corners2); } } //标定相机 double rms = stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, E, F, CALIB_FIX_INTRINSIC + CALIB_USE_INTRINSIC_GUESS + CALIB_SAME_FOCAL_LENGTH + CALIB_RATIONAL_MODEL + CALIB_FIX_K3 + CALIB_FIX_K4 + CALIB_FIX_K5, TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 100, 1e-5)); cout << "Stereo calibration done with RMS error = " << rms << endl; //保存标定结果 FileStorage fs("stereo_calib.xml", FileStorage::WRITE); fs << "cameraMatrix1" << cameraMatrix1; fs << "distCoeffs1" << distCoeffs1; fs << "cameraMatrix2" << cameraMatrix2; fs << "distCoeffs2" << distCoeffs2; fs << "R" << R; fs << "T" << T; fs << "E" << E; fs << "F" << F; fs.release(); return 0; } ``` 以上代码仅供参考,实际应用中需要根据具体情况进行修改和调整。

针孔模型畸变矫正源码 C++

以下是使用OpenCV库实现针孔模型畸变矫正的C++源代码: ```cpp #include "opencv2/opencv.hpp" #include <iostream> using namespace cv; using namespace std; int main() { // 定义相机内参矩阵 Mat cameraMatrix = (Mat_<double>(3, 3) << 1000, 0, 320, 0, 1000, 240, 0, 0, 1); // 定义畸变系数矩阵 Mat distCoeffs = (Mat_<double>(1, 5) << 0.1, 0.01, 0, 0, -0.01); // 读取待矫正的图像 Mat src = imread("distorted_image.jpg"); // 进行畸变矫正 Mat undistorted; undistort(src, undistorted, cameraMatrix, distCoeffs); // 显示矫正前后的图像 imshow("Distorted Image", src); imshow("Undistorted Image", undistorted); waitKey(0); return 0; } ``` 其中,需要将相机内参矩阵和畸变系数矩阵替换为实际相机的参数,同时需要将待矫正的图像路径替换为实际路径。

相关推荐

最新推荐

recommend-type

微信小程序-番茄时钟源码

微信小程序番茄时钟的源码,支持进一步的修改。番茄钟,指的是把工作任务分解成半小时左右,集中精力工作25分钟后休息5分钟,如此视作种一个“番茄”,而“番茄工作法”的流程能使下一个30分钟更有动力。
recommend-type

激光雷达专题研究:迈向高阶智能化关键,前瞻布局把握行业脉搏.pdf

电子元件 电子行业 行业分析 数据分析 数据报告 行业报告
recommend-type

安享智慧理财测试项目Mock服务代码

安享智慧理财测试项目Mock服务代码
recommend-type

课程设计 基于SparkMLlib的ALS算法的电影推荐系统源码+详细文档+全部数据齐全.zip

【资源说明】 课程设计 基于SparkMLlib的ALS算法的电影推荐系统源码+详细文档+全部数据齐全.zip课程设计 基于SparkMLlib的ALS算法的电影推荐系统源码+详细文档+全部数据齐全.zip 【备注】 1、该项目是高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

华中科技大学电信专业 课程资料 作业 代码 实验报告-雷达与信息对抗-内含源码和说明书.zip

华中科技大学电信专业 课程资料 作业 代码 实验报告-雷达与信息对抗-内含源码和说明书.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。