[84.15, 74.25, 97.2, 83.25, 102.6, 88.8, 77.55, 91.8, 68.45, 102.6, 86.4, 64.35, 81.6, 97.2, 81.0, 76.5, 83.25, 29.7, 93.6, 79.8, 80.0, 91.2, 72.0, 88.8, 73.6, 94.05, 34.65, 52.8, 64.35, 69.75, 79.2, 81.6, 84.6, 81.0, 79.2, 91.8, 77.4, 83.25, 64.8, 74.25, 36.75, 37.7, 85.8, 92.5, 88.8, 39.6, 54.45, 86.4, 91.8, 73.8, 76.8, 77.55, 57.6, 90.75, 88.2, 86.4, 58.5, 76.5, 81.0, 49.5, 82.5, 88.2, 91.2, 66.0, 74.25, 99.9, 60.45, 79.2, 86.4, 75.2, 72.6, 96.9, 56.1, 74.25, 64.8, 81.6, 89.25, 88.8, 97.2, 96.35, 81.6, 72.0, 80.85, 94.35, 74.25, 80.0, 94.35, 36.3, 67.2, 81.6, 73.5, 76.8, 66.0, 86.4, 98.05, 81.4, 86.4, 70.2, 74.4, 44.55, 39.6, 87.45, 83.25, 82.5, 74.25, 82.8, 75.2, 86.4, 89.1, 37.95, 61.5, 72.6, 98.4, 86.95, 89.1, 89.1, 79.2, 81.0, 80.85, 52.5, 56.1, 69.3, 84.6, 83.25, 79.2, 66.5, 93.6, 81.6, 86.4, 97.2, 89.1, 91.8, 70.4, 79.2, 81.0, 100.8, 84.15, 90.0, 74.25, 64.8, 94.35, 81.0, 81.0, 93.6, 91.8, 77.55, 61.5, 89.1, 94.35, 81.7, 90.65, 92.75, 64.35, 66.0, 37.95, 91.8, 86.4, 75.0, 76.8, 75.2, 61.05, 91.8, 72.0, 94.05, 81.0, 81.6, 91.8, 95.2, 94.05, 81.0, 68.8, 84.6, 86.4, 89.25, 75.6, 84.15, 76.8, 85.75, 88.2, 85.8, 81.0, 72.5, 76.8, 55.8, 82.5, 72.0, 91.8, 70.95, 81.0, 86.4, 97.2, 72.0, 92.5, 69.3, 91.8, 84.15, 55.8, 89.1, 86.4, 86.4, 76.8, 88.2, 94.5, 92.5, 81.6, 72.0, 88.8, 89.1, 59.2, 87.4, 72.0, 85.8, 72.0, 72.0, 94.35, 98.4, 75.6, 89.1, 66.6, 76.5, 75.9, 70.2, 86.4, 91.8, 85.8, 54.45, 41.85, 88.0, 78.4, 85.8, 79.2, 66.6, 79.2, 59.4, 67.2, 86.4, 79.2, 86.4, 39.6, 84.15, 86.1, 81.6, 89.1, 79.2, 91.2, 76.5, 97.2, 99.9, 79.2, 76.8, 71.75, 39.6, 48.6, 79.2, 89.1, 81.0, 84.6, 81.6, 68.8, 81.6, 86.4, 72.0, 89.1, 89.6, 47.25, 63.0, 97.2, 91.8, 46.8, 90.0, 62.4, 88.8, 64.35, 89.1, 77.7, 86.4, 88.8, 91.8, 81.6, 85.8, 73.6, 86.95, 92.4, 91.8, 94.35, 74.25, 69.3, 83.2, 73.5, 82.8, 74.25, 95.4, 72.0, 77.9, 75.2, 76.8, 97.2, 84.15, 66.0, 78.4]按照这组数据的概率分布采样10个数

时间: 2023-04-03 16:00:24 浏览: 264
我可以回答这个问题。根据这组数据的概率分布,可以使用随机数生成器来进行采样。以下是采样的10个数:89.1, 81.6, 86.4, 81.6, 81., 81.6, 81., 81.6, 86.4, 81.。
相关问题

[84.15, 74.25, 97.2, 83.25, 102.6, 88.8, 77.55, 91.8, 68.45, 102.6, 86.4, 64.35, 81.6, 97.2, 81.0, 76.5, 83.25, 29.7, 93.6, 79.8]按照这组数据的概率分布采样10个数的具体步骤

可以使用随机数生成器来进行采样,具体步骤如下: 1. 计算数据的概率分布,即将每个数据除以所有数据的和,得到每个数据出现的概率。 2. 计算累积概率分布,即将每个数据的概率累加起来,得到每个数据出现的累积概率。 3. 生成10个随机数,每个随机数在到1之间。 4. 对于每个随机数,找到第一个累积概率大于等于该随机数的数据,即为采样结果。 5. 重复步骤4,直到生成10个采样结果。 注意:在步骤4中,可以使用二分查找等算法来加速查找过程。

java建一个string类型的数组并填入数据:0.15,0.7,1.52,2.65,4.08,6.06,7.98,9.91,11.86,14.05,15.9,17.84,20.06,21.99,23.94,25.9,27.84,30.06,31.97,33.9,35.61,37.03,38.26,38.99,39.42,39.53,39.53,39.77,40.24,40.8,41.28,41.77,42.3,42.78,43.27,43.75,44.3,44.78,45.27,45.76,46.31,46.79,47.27,47.75,48.31,48.79,49.27,49.76,50.3,50.78,51.27,51.76,52.31,52.8,53.28,53.77,54.25,54.74,55.3,55.78,56.27,56.75,57.3,57.79,58.28,58.76,59.25,59.81,60.29,60.78,61.26,61.75,62.3,62.78,63.27,63.75,64.31,64.79,65.28,65.76,66.24,66.8,67.28,67.76,68.25,68.81,69.28,69.77,70.25,70.81,71.29,71.78,72.26,72.75,73.3,73.79,74.25,74.8,75.29,75.77,76.24,76.8,77.28,77.77,78.25,78.81,79.29,79.78,80.26,80.75,81.31,81.79,82.27,82.76,83.3,83.79,84.27,84.76,85.25,85.8,86.29,86.77,87.26,87.74,88.3,88.78,89.27,89.76,90.31,90.79,91.28,91.76,92.31,92.8,93.28,93.77,94.25,94.81,95.29,95.77,96.25,96.8,97.28,97.77,98.31,98.8,99.28,99.77,100.25,100.8,101.29,101.77,102.26,102.79,103.28,103.76,104.24,104.8,105.28,105.77,106.25,106.81,107.28,107.77,108.26,108.81,109.29,109.77,110.25,110.8,111.28,111.77,112.26,112.81,113.29,113.78,114.26,114.75,115.3,115.78,116.27,116.75,117.3,117.79,118.27,118.76,119.31,119.79,120.28,120.76,121.31,121.8,122.28,122.76,123.31,123.79,124.28,124.76,125.24,125.8,126.28,126.77,127.25,127.8,128.28,128.77,129.25,129.8,130.27,130.75,131.24,131.8,132.28,132.76,133.25,133.8,134.28,134.77,135.26,135.81,136.3,136.78,137.26,137.75,138.3,138.79,139.27,139.76,140.25,140.8,141.29,141.78,142.26,142.75,143.3,143.78,144.26,144.81,145.28,145.76,146.3,146.77,147.25,147.8,148.28,148.76,149.25,149.8,150.29,150.76,151.31,151.79,152.26,152.81,153.28,153.69,

String[] arr = {"0.15","0.7","1.52","2.65","4.08","6.06","7.98","9.91","11.86","14.05","15.9","17.84","20.06","21.99","23.94","25.9","27.84","30.06","31.97","33.9","35.61","37.03","38.26","38.99","39.42","39.53","39.53","39.77","40.24","40.8","41.28","41.77","42.3","42.78","43.27","43.75","44.3","44.78","45.27","45.76","46.31","46.79","47.27","47.75","48.31","48.79","49.27","49.76","50.3","50.78","51.27","51.76","52.31","52.8","53.28","53.77","54.25","54.74","55.3","55.78","56.27","56.75","57.3","57.79","58.28","58.76","59.25","59.81","60.29","60.78","61.26","61.75","62.3","62.78","63.27","63.75","64.31","64.79","65.28","65.76","66.24","66.8","67.28","67.76","68.25","68.81","69.28","69.77","70.25","70.81","71.29","71.78","72.26","72.75","73.3","73.79","74.25","74.8","75.29","75.77","76.24","76.8","77.28","77.77","78.25","78.81","79.29","79.78","80.26","80.75","81.31","81.79","82.27","82.76","83.3","83.79","84.27","84.76","85.25","85.8","86.29","86.77","87.26","87.74","88.3","88.78","89.27","89.76","90.31","90.79","91.28","91.76","92.31","92.8","93.28","93.77","94.25","94.81","95.29","95.77","96.25","96.8","97.28","97.77","98.31","98.8","99.28","99.77","100.25","100.8","101.29","101.77","102.26","102.79","103.28","103.76","104.24","104.8","105.28","105.77","106.25","106.81","107.28","107.77","108.26","108.81","109.29","109.77","110.25","110.8","111.28","111.77","112.26","112.81","113.29","113.78","114.26","114.75","115.3","115.78","116.27","116.75","117.3","117.79","118.27","118.76","119.31","119.79","120.28","120.76","121.31","121.8","122.28","122.76","123.31","123.79","124.28","124.76","125.24","125.8","126.28","126.77","127.25","127.8","128.28","128.77","129.25","129.8","130.27","130.75","131.24","131.8","132.28","132.76","133.25","133.8","134.28","134.77","135.26","135.81","136.3","136.78","137.26","137.75","138.3","138.79","139.27","139.76","140.25","140.8","141.29","141.78","142.26","142.75","143.3","143.78","144.26","144.81","145.28","145.76","146.3","146.77","147.25","147.8","148.28","148.76","149.25","149.8","150.29","150.76","151.31","151.79","152.26","152.81","153.28","153.69"};
阅读全文

相关推荐

最新推荐

recommend-type

IMX225-Data_Sheet.pdf

* 输入频率:54 MHz / 27 MHz / 74.25 MHz / 37.125 MHz * 推荐记录像素:1280 (H) × 960 (V)约123万像素 * 读取模式: Quad VGA全像素扫描模式 / 水平 / 垂直2 × 2 binning模式 / 窗口裁剪模式 / 720p-HD读取模式...
recommend-type

IMX327LQR-C_TechnicalDatasheet_E_Rev0.2.pdf

◆ 输入频率:74.25 MHz / 37.125 MHz ◆ 推荐记录像素数:1920(H)× 1080(V),约2.07 M像素 ◆ 读取模式:所有像素扫描模式、720p-HD读取模式、窗口裁剪模式、垂直/水平方向普通/倒置读取模式 ◆ 读取率:最大...
recommend-type

2014下半年信息系统项目管理师真题(下午案例分析)

案例中,AC=80 万元,CPI=74.25/80=0.928,SPI=74.25/65=1.142。CPI 小于 1 表示成本超支,SPI 大于 1 表明进度超前。落后于计划的工作包包括 E,因为其实际完成百分比低于计划。而 C、D、G、H、I、J 工作包超前于...
recommend-type

基于STM32单片机的激光雕刻机控制系统设计-含详细步骤和代码

内容概要:本文详细介绍了基于STM32单片机的激光雕刻机控制系统的设计。系统包括硬件设计、软件设计和机械结构设计,主要功能有可调节激光功率大小、改变雕刻速率、手动定位、精确雕刻及切割。硬件部分包括STM32最小系统、步进电机驱动模块、激光发生器控制电路、人机交互电路和串口通信电路。软件部分涉及STM32CubeMX配置、G代码解析、步进电机控制、激光功率调节和手动定位功能的实现。 适合人群:对嵌入式系统和激光雕刻机感兴趣的工程师和技术人员。 使用场景及目标:① 适用于需要高精度激光雕刻的应用场合;② 为开发类似的激光雕刻控制系统提供设计参考。 阅读建议:本文提供了详细的硬件和软件设计方案,读者应结合实际应用场景进行理解,重点关注电路设计和代码实现。
recommend-type

白色简洁风格的前端网站模板下载.zip

白色简洁风格的前端网站模板下载.zip
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"