利用74LS138、与非门、74LS47和共阳极数码管(或74LS48和共阴极数码管)设计1位全加器。
时间: 2023-05-27 08:06:28 浏览: 271
1位全加器的真值表如下:
| 输入A | 输入B | 输入Cin | 输出S | 输出Cout |
|-------|-------|---------|-------|---------|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |
其中,输入A和输入B是要相加的两个二进制数的各位,输入Cin是上一位相加时的进位,输出S是相加的结果,输出Cout是本位相加时的进位,即下一位的输入Cin。
利用74LS138,可以实现输入A、输入B和输入Cin的选择。74LS138是一个三-八译码器,其三个输入端口A、B和Cn用于选择8个输出端口中的一个。如果A、B和Cn的二进制值为i、j和k,那么输出端口n的输出信号就是输入信号i、j、k的反码。这样,我们可以实现对输入A、输入B和输入Cin的选择。具体电路如下图所示:
![1位全加器电路图](https://img-blog.csdn.net/20180414213338821)
其中,74LS138的8个输出端口分别对应8种选择情况。A、B和Cin分别与74LS138的A、B和Cn端口相连,共同控制8个输出端口的选择。
对于每种选择情况,我们需要实现对应的逻辑功能。这可以通过与非门实现。与非门的输出信号是其两个输入信号的逻辑与的反码。因此,我们可以利用与非门实现逻辑非和逻辑与的组合逻辑。具体电路如下图所示:
![1位全加器电路图](https://img-blog.csdn.net/20180414213413349)
其中,与非门的输出信号作为74LS47的输入信号。74LS47是一个BCD-7段译码器,用于将二进制数转换为7段数码管的显示信号。因此,我们可以将74LS47的输出信号与共阳极数码管相连,显示出计算结果。如果使用74LS48和共阴极数码管,则需要将74LS48的输出信号取反,再与共阴极数码管相连。
阅读全文