// Load Sentinel-2 TOA reflectance data. var sentinel = ee.ImageCollection('COPERNICUS/S2') .filterDate('2019-01-01', '2019-12-31') .filterBounds(table) .map(function(image) { var cloud_mask = ee.Image(0).where( image.select('QA60').bitwiseAnd(1<<10), 1).rename('cloud_mask'); var cloud_probability = image.select('QA60').bitwiseAnd(1024).rightShift(10).rename('cloud_probability'); var cloud_shadow_probability = image.select('QA60').bitwiseAnd(2048).rightShift(11).rename('cloud_shadow_probability'); var cloud_mask_combined = cloud_mask.or(cloud_probability.gt(20)).or(cloud_shadow_probability.gt(20)); return image.addBands(cloud_mask_combined); }) .map(function(image) { return image.clip(table); }); // Function to mask clouds using the Sentinel-2 cloud mask. var maskClouds = function(image) { var cloudMask = image.select('cloud_mask').not(); return image.updateMask(cloudMask); }; // Function to calculate the NDVI. var calculateNDVI = function(image) { var ndvi = image.normalizedDifference(['B8', 'B4']).rename('ndvi'); return image.addBands(ndvi); }; // Function to calculate the EVI. var calculateEVI = function(image) { var evi = image.expression( '2.5 * (nir - red) / (nir + 6 * red - 7.5 * blue + 1)', { 'nir': image.select('B8'), 'red': image.select('B4'), 'blue': image.select('B2') }).rename('evi'); return image.addBands(evi); }; // Apply the cloud mask, calculate the NDVI and EVI, and combine the bands. var sentinel_ndvi_evi = sentinel .map(maskClouds) .map(calculateNDVI) .map(calculateEVI) .select(['B2', 'B3', 'B4', 'B8', 'ndvi', 'evi']); // Function to filter images based on the quality of the NDVI and EVI. var filterQuality = function(image) { var ndvi_quality = image.select('ndvi').qualityMosaic('ndvi').gte(0.6); var evi_quality = image.select('evi').qualityMosaic('evi').gte(0.6); return image.updateMask(ndvi_quality.and(evi_quality)); }; // Filter the images based on the quality of the NDVI and EVI. var sentinel_filtered = sentinel_ndvi_evi.filter(filterQuality); // Create a median composite of the filtered images and display it. var sentinel_median = sentinel_filtered.median(); Map.addLayer(sentinel_median, {bands: ['B4', 'B3', 'B2'], min: 0, max: 0.3}, 'Sentinel-2 Median Composite');

时间: 2023-12-25 09:03:57 浏览: 21
这段代码使用 Google Earth Engine 平台加载 Sentinel-2 的 TOA 反射率数据,并对其进行云掩膜、NDVI、EVI 计算,最后使用质量筛选函数过滤图像,并生成中值合成图像。其中,变量 `sentinel` 是 Sentinel-2 图像集合,通过 `filterDate()`、`filterBounds()` 进行时间和空间筛选;`map()` 函数内的代码则是对每个图像进行云掩膜、NDVI、EVI 计算;`maskClouds()`、`calculateNDVI()`、`calculateEVI()` 分别是云掩膜、NDVI、EVI 计算的函数;`sentinel_ndvi_evi` 变量是应用了云掩膜、NDVI、EVI 计算的图像集合,并选择了所需的波段;`filterQuality()` 是质量筛选函数,根据 NDVI 和 EVI 的质量指标进行筛选;`sentinel_filtered` 是经过质量筛选后的图像集合;`sentinel_median` 是经过中值合成的结果,用于可视化。
相关问题

function maskL8sr(image) { // The third bit is cloud and the fourth bit is cloudshadow。 var cloudShadowBitMask = 1 << 4; var cloudsBitMask = 1 << 3; // Get QA_PIXEL band. var qa = image.select('QA_PIXEL'); // Set the cloud mask to zero var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0) .and(qa.bitwiseAnd(cloudsBitMask).eq(0)); // Update the cloudmask return image.updateMask(mask) .select("SR_B.*") .copyProperties(image, ["system:time_start"]); } // Map the function over 3 months of data and take the median. // Load Landsat-8 surface reflectance data. var landsat8 = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2") .filterBounds(table) .filterDate('2019-1-01','2020-1-1') // Pre-filter to get less cloudy granules. .filter(ee.Filter.lte('CLOUD_COVER',5)) .map(maskL8sr) .median() .clip(table); landsat8 = landsat8.uint16(); print(landsat8);// visualize the datasets var rgbVis = { min: 8400, max: 15000, gamma:1.5, bands: ['SR_B4', 'SR_B3', 'SR_B2'], }; Map.addLayer(landsat8,rgbVis,'landsat8'); var imgselect = landsat8.select('SR_B2','SR_B3','SR_B4','SR_B5'); //Export image to google drive and then download Export.image.toDrive({ image:imgselect, description:'2019yaogan', scale:30, region:table, folder:"result", crs: "EPSG:4326", maxPixels: 1e13 });将这一段利用Landsat的代码改写成使用哨兵2

Sure here's the modified code to use Sentinel-2 instead of Landsat: ``` function maskS2clouds(image) { var qa = image.select('QA60'); // Bits 10 and 11 are clouds and cirrus, respectively. var cloudBitMask = 1 << 10; var cirrusBitMask = 1 << 11; // Both flags should be set to zero, indicating clear conditions. var mask = qa.bitwiseAnd(cloudBitMask).eq(0) .and(qa.bitwiseAnd(cirrusBitMask).eq(0)); // Return the masked image, scaled to reflectance, without the QA bands. return image.updateMask(mask) .select('B.*') .multiply(0.0001) .copyProperties(image, ['system:time_start']); } // Load Sentinel-2 surface reflectance data. var sentinel2 = ee.ImageCollection('COPERNICUS/S2_SR') .filterBounds(table) .filterDate('2019-01-01', '2020-01-01') .map(maskS2clouds) .median() .clip(table); sentinel2 = sentinel2.uint16(); print(sentinel2); // Visualize the datasets var rgbVis = { min: 0.0, max: 3000.0, gamma: 1.5, bands: ['B4', 'B3', 'B2'], }; Map.addLayer(sentinel2, rgbVis, 'Sentinel-2'); var imgselect = sentinel2.select('B2', 'B3', 'B4', 'B8'); // Export image to Google Drive Export.image.toDrive({ image: imgselect, description: '2019yaogan', scale: 10, region: table, folder: 'result', crs: 'EPSG:4326', maxPixels: 1e13 }); ``` Note that Sentinel-2's surface reflectance data has a different band naming convention and scale factor compared to Landsat, so the code has been modified accordingly.

改进代码:var sentinel1 = ee.ImageCollection('COPERNICUS/S1_GRD') .filterBounds(aoi) .filterDate('2020-01-01','2020-12-31') .filterMetadata('instrumentMode', 'equals', 'IW'); var sentinel1_vv_vh = sentinel1.select(['VV', 'VH']).median(); // 获取图像中所有波段的名称 var ratio = sentinel1_vv_vh.select('VV').divide(sentinel1_vv_vh.select('VH'));

你的代码已经很不错了,但如果你想要更好的可读性和可维护性,可以考虑使用变量名来描述你的数据和操作,以及将代码分解为更小的部分。 以下是一个可能的改进版本: ```javascript // 定义感兴趣区域 var areaOfInterest = ee.Geometry.Rectangle([xmin, ymin, xmax, ymax]); // 定义 Sentinel-1 数据集 var sentinel1 = ee.ImageCollection('COPERNICUS/S1_GRD') .filterBounds(areaOfInterest) .filterDate('2020-01-01', '2020-12-31') .filterMetadata('instrumentMode', 'equals', 'IW'); // 获取 VV 和 VH 波段的中位数 var vvVhMedian = sentinel1.select(['VV', 'VH']).median(); // 计算 VV/VH 比值 var vvOverVh = vvVhMedian.select('VV').divide(vvVhMedian.select('VH')); ``` 这个版本使用了更具描述性的变量名,例如 `areaOfInterest` 和 `vvOverVh`,使代码更加易读和易于理解。它还将代码分解为三个步骤,每个步骤都有自己的注释,以帮助读者理解代码的目的和意图。

相关推荐

最新推荐

recommend-type

在EarthData下载Sentinel-1A卫星影像步骤.pdf

在EarthData下载Sentinel-1A卫星影像步骤,如标题的介绍,简单直接,对insar初学者有帮助
recommend-type

Sen2cor处理sentinel-2流程.docx

此文档详细描述了在win10系统下,利用Sen2cor插件对哨兵2号进行辐射定标和大气校正的处理流程
recommend-type

案例剖析:基于Sentinel-1A卫星影像PSSBAS地面沉降监测-白泽朝.pptx

案例剖析:基于Sentinel-1A卫星影像PSSBAS地面沉降监测-白泽朝.pptx
recommend-type

Sentinel-2 Sen2Cor 大气校正步骤以及在SNAP中打开

Sentinel-2 Sen2Cor 大气校正步骤以及在SNAP中打开,哨兵2预处理
recommend-type

SNAP处理Sentinel-1 IW SLC数据

SNAP处理Sentinel-1 IW SLC数据的详细指导,对于insar初学者有很大的帮助。还有一些技术细节的罗列。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。