实现一段C++cuda代码,可以对特定维度的矩阵利用cusparse库进行矩阵乘法
时间: 2024-03-25 10:36:33 浏览: 72
cuda.zip_cuda矩阵_矩阵乘法
好的,下面是一段C++ CUDA代码,可以对特定维度的矩阵利用cusparse库进行矩阵乘法:
```cpp
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include <cusparse.h>
int main()
{
cusparseHandle_t handle;
cusparseCreate(&handle);
//定义矩阵A和矩阵B
const int ROWS = 3;
const int COLS = 3;
const int NNZ = 9;
float h_A[NNZ] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0};
float h_B[NNZ] = {9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0};
//矩阵A和矩阵B的行、列、非零元素个数
const int h_A_row_ptr[ROWS+1] = {0, 3, 6, 9};
const int h_A_col_idx[NNZ] = {0, 1, 2, 0, 1, 2, 0, 1, 2};
const int h_B_row_ptr[ROWS+1] = {0, 3, 6, 9};
const int h_B_col_idx[NNZ] = {0, 1, 2, 0, 1, 2, 0, 1, 2};
//定义设备端矩阵A和矩阵B
float *d_A, *d_B;
cudaMalloc((void**)&d_A, NNZ*sizeof(float));
cudaMalloc((void**)&d_B, NNZ*sizeof(float));
cudaMemcpy(d_A, h_A, NNZ*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, NNZ*sizeof(float), cudaMemcpyHostToDevice);
//定义矩阵C
const int NNZ_C = ROWS * ROWS;
float h_C[NNZ_C] = {0};
//矩阵A、B、C在CUSPARSE中的描述符
cusparseMatDescr_t descrA, descrB, descrC;
cusparseCreateMatDescr(&descrA);
cusparseCreateMatDescr(&descrB);
cusparseCreateMatDescr(&descrC);
cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatType(descrB, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatType(descrC, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO);
cusparseSetMatIndexBase(descrB, CUSPARSE_INDEX_BASE_ZERO);
cusparseSetMatIndexBase(descrC, CUSPARSE_INDEX_BASE_ZERO);
//定义矩阵A、B、C在CUSPARSE中的行指针、列下标和数值
int *d_A_row_ptr, *d_A_col_idx, *d_B_row_ptr, *d_B_col_idx, *d_C_row_ptr, *d_C_col_idx;
float *d_C_val;
cudaMalloc((void**)&d_A_row_ptr, (ROWS+1)*sizeof(int));
cudaMalloc((void**)&d_A_col_idx, NNZ*sizeof(int));
cudaMalloc((void**)&d_B_row_ptr, (ROWS+1)*sizeof(int));
cudaMalloc((void**)&d_B_col_idx, NNZ*sizeof(int));
cudaMalloc((void**)&d_C_row_ptr, (ROWS+1)*sizeof(int));
cudaMalloc((void**)&d_C_col_idx, NNZ_C*sizeof(int));
cudaMalloc((void**)&d_C_val, NNZ_C*sizeof(float));
cudaMemcpy(d_A_row_ptr, h_A_row_ptr, (ROWS+1)*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_A_col_idx, h_A_col_idx, NNZ*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_B_row_ptr, h_B_row_ptr, (ROWS+1)*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_B_col_idx, h_B_col_idx, NNZ*sizeof(int), cudaMemcpyHostToDevice);
//计算矩阵C
cusparseScsrmult(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, CUSPARSE_OPERATION_NON_TRANSPOSE, ROWS, ROWS, COLS, &NNZ,
&alpha, descrA, d_A_val, d_A_row_ptr, d_A_col_idx, descrB, d_B_val, d_B_row_ptr, d_B_col_idx,
&beta, descrC, d_C_val, d_C_row_ptr, d_C_col_idx);
cudaMemcpy(h_C, d_C_val, NNZ_C*sizeof(float), cudaMemcpyDeviceToHost);
//释放内存
cusparseDestroyMatDescr(descrA);
cusparseDestroyMatDescr(descrB);
cusparseDestroyMatDescr(descrC);
cusparseDestroy(handle);
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_A_row_ptr);
cudaFree(d_A_col_idx);
cudaFree(d_B_row_ptr);
cudaFree(d_B_col_idx);
cudaFree(d_C_row_ptr);
cudaFree(d_C_col_idx);
cudaFree(d_C_val);
return 0;
}
```
这段代码利用cusparse库进行矩阵乘法,其中矩阵A和矩阵B的维度为3×3,非零元素个数为9,矩阵C的维度为3×3,利用CSR格式存储。具体实现过程中,首先定义矩阵A和矩阵B,并在设备端分配内存,并将数据从主机端复制到设备端。然后定义矩阵C,并在CUSPARSE中定义矩阵A、B、C的描述符。接着定义矩阵A、B、C在CUSPARSE中的行指针、列下标和数值,并在CUSPARSE中计算矩阵C。最后,释放内存。
阅读全文