四元数奇异值分解 Python代码
时间: 2023-11-05 14:15:07 浏览: 127
python将四元数变换为旋转矩阵的实例
以下是使用Python实现四元数奇异值分解(Quaternion Singular Value Decomposition)的代码:
```python
import numpy as np
from scipy.linalg import sqrtm
def quaternion_svd(Q):
"""
Perform Quaternion Singular Value Decomposition (QSVD) on a quaternion matrix Q.
Args:
Q (np.array): A 4x4 quaternion matrix.
Returns:
U (np.array): A 4x4 unitary quaternion matrix.
sigma (np.array): A 4x1 vector of singular values.
V (np.array): A 4x4 unitary quaternion matrix.
"""
# Construct the Hermitian matrix H from Q
H = np.zeros((4, 4), dtype=np.complex64)
H[:3, :3] = Q[1:, 1:] - Q[0, 0] * np.identity(3)
H[:3, 3] = Q[1:, 0]
H[3, :3] = np.conj(Q[1:, 0])
H[3, 3] = Q[0, 0]
# Compute the eigenvectors and eigenvalues of H
eigvals, eigvecs = np.linalg.eig(H)
# Sort the eigenvectors based on the magnitude of their eigenvalues
idx = np.argsort(np.abs(eigvals))[::-1]
eigvecs = eigvecs[:, idx]
# Compute the left and right singular vectors of Q
U = np.zeros((4, 4), dtype=np.complex64)
V = np.zeros((4, 4), dtype=np.complex64)
for i in range(4):
v = eigvecs[:, i]
u = Q @ v
U[:, i] = u / np.linalg.norm(u)
V[:, i] = v / np.linalg.norm(v)
# Compute the singular values of Q
sigma = np.sqrt(np.abs(eigvals[idx]))
return U, sigma, V
```
这个函数接受一个 $4 \times 4$ 的四元数矩阵作为输入,返回左奇异向量矩阵 $U$,奇异值向量 $\sigma$ 和右奇异向量矩阵 $V$。其中,左奇异向量矩阵和右奇异向量矩阵都是 $4 \times 4$ 的 unitary quaternion 矩阵,而奇异值向量是一个 $4 \times 1$ 的向量。
注意,这个代码依赖于 NumPy 和 SciPy 库。
阅读全文