matlab A = [1,L:L:L*floor((nr-1)/L),nr];

时间: 2024-05-30 11:13:50 浏览: 14
这是一个 MATLAB 代码行,其中 A 是一个向量。该向量由以下元素组成: 1. 第一个元素是数字 1。 2. 从第二个元素开始,每隔 L 个元素加入一次数字 L 的倍数,直到最靠右的 L 的倍数不超过 nr-1 为止。 3. 将 nr 加入向量的末尾。 举个例子,如果 L=2,nr=6,那么向量 A 将是 [1 2 4 6]。
相关问题

%% MSR I=imread('C:\Users\sensen\Desktop\雾霾天气素材\1.jpg'); wu1 = rgb2gray(I); fr=I(:,:,1); fg=I(:,:,2); fb=I(:,:,3); mr=im2double(fr); mg=im2double(fg); mb=im2double(fb); n=141;%定义模板大小。 kid=141; n1=floor((n+1)/2);%确定中心 a1=60; %定义标准差(尺度) kid=60; for i=1:n for j=1:n b(i,j) =exp(-((i-n1)^2+(j-n1)^2)/(a1*a1))/(pi*a1*a1); %高斯函数。 end end nr1=imfilter(mr,b,'conv','replicate'); ng1=imfilter(mg,b,'conv','replicate'); nb1=imfilter(mb,b,'conv','replicate');%卷积滤波。 ur1=log(nr1); ug1=log(ng1); ub1=log(nb1); tr1=log(mr+eps);tg1=log(mg+eps);tb1=log(mb+eps); yr1=(tr1-ur1)/3;yg1=(tg1-ug1)/3;yb1=(tb1-ub1)/3; a2=10; %定义标准差(尺度) for i=1:n for j=1:n a(i,j) =exp(-((i-n1)^2+(j-n1)^2)/(a2*a2))/(pi*a2*a2); %高斯函数。 end end nr2=imfilter(mr,a,'conv','replicate'); ng2=imfilter(mg,a,'conv','replicate'); nb2=imfilter(mb,a,'conv','replicate');%卷积滤波。 ur2=log(nr2);ug2=log(ng2);ub2=log(nb2); tr2=log(mr+eps);tg2=log(mg+eps);tb2=log(mb+eps); yr2=(tr2-ur2)/3;yg2=(tg2-ug2)/3;yb2=(tb2-ub2)/3; a3=150; %定义标准差(尺度)kid=150; for i=1:n for j=1:n e(i,j) =exp(-((i-n1)^2+(j-n1)^2)/(a3*a3))/(pi*a3*a3); %高斯函数。 end end nr3=imfilter(mr,e,'conv','replicate'); ng3=imfilter(mg,e,'conv','replicate'); nb3=imfilter(mb,e,'conv','replicate');%卷积滤波。 ur3=log(nr3);ug3=log(ng3);ub3=log(nb3); tr3=log(mr+eps);tg3=log(mg+eps);tb3=log(mb+eps); yr3=(tr3-ur3)/3;yg3=(tg3-ug3)/3;yb3=(tb3-ub3)/3; dr=yr1+yr2+yr3;dg=yg1+yg2+yg3;db=yb1+yb2+yb3; cr=im2uint8(dr); cg=im2uint8(dg); cb=im2uint8(db); z=cat(3,cr,cg,cb); wu2 = rgb2gray(z); figure(2) subplot(2,2,1), imshow(I);title('原图'); subplot(2,2,2), imshow(z);title('MSR去雾后'); subplot(2,2,3), imhist(wu1);title('原图-灰度'); subplot(2,2,4), imhist(wu2);title('SSR去雾后-灰度');

这段代码实现了 MSR (Multi-Scale Retinex) 算法的图像去雾,以下是代码的解释: 1. 读取输入图像,转换为灰度图像。 2. 对 R、G、B 三个通道分别进行 MSR 算法处理,得到三个去雾图像。 3. 将三个去雾图像合并,得到最终的去雾图像。 4. 显示原图、去雾图像以及两者的灰度直方图。 需要注意的是,这段代码中 MSR 算法的具体实现部分使用了高斯滤波器对图像进行平滑处理,并计算图像的对数值,以增强图像的细节。另外,这里的 MSR 算法实现只是一个简单的示例,实际应用中需要根据具体情况进行调整和优化。 同时,这段代码中 SSR 去雾后灰度直方图的绘制有误,应该是针对 MSR 去雾后的灰度直方图。可以将第 18 行的 `SSR去雾后` 改为 `MSR去雾后`。 以下是代码的修改建议: ```matlab % 读取输入图像,转换为灰度图像 I = imread('C:\Users\sensen\Desktop\雾霾天气素材\1.jpg'); wu1 = rgb2gray(I); % 分离 R、G、B 三个通道 fr = I(:,:,1); fg = I(:,:,2); fb = I(:,:,3); % 对每个通道分别进行 MSR 算法处理,得到三个去雾图像 mr = im2double(fr); mg = im2double(fg); mb = im2double(fb); n = 141; % 定义模板大小 kid = 141; n1 = floor((n+1)/2); % 确定中心 a1 = 60; % 定义标准差(尺度) for i = 1:n for j = 1:n b(i,j) = exp(-((i-n1)^2+(j-n1)^2)/(a1*a1))/(pi*a1*a1); % 高斯函数 end end nr1 = imfilter(mr, b, 'conv', 'replicate'); ng1 = imfilter(mg, b, 'conv', 'replicate'); nb1 = imfilter(mb, b, 'conv', 'replicate'); % 卷积滤波 ur1 = log(nr1); ug1 = log(ng1); ub1 = log(nb1); tr1 = log(mr+eps); tg1 = log(mg+eps); tb1 = log(mb+eps); yr1 = (tr1-ur1)/3; yg1 = (tg1-ug1)/3; yb1 = (tb1-ub1)/3; a2 = 10; % 定义标准差(尺度) for i = 1:n for j = 1:n a(i,j) = exp(-((i-n1)^2+(j-n1)^2)/(a2*a2))/(pi*a2*a2); % 高斯函数 end end nr2 = imfilter(mr, a, 'conv', 'replicate'); ng2 = imfilter(mg, a, 'conv', 'replicate'); nb2 = imfilter(mb, a, 'conv', 'replicate'); % 卷积滤波 ur2 = log(nr2); ug2 = log(ng2); ub2 = log(nb2); tr2 = log(mr+eps); tg2 = log(mg+eps); tb2 = log(mb+eps); yr2 = (tr2-ur2)/3; yg2 = (tg2-ug2)/3; yb2 = (tb2-ub2)/3; a3 = 150; % 定义标准差(尺度) kid = 150; for i = 1:n for j = 1:n e(i,j) = exp(-((i-n1)^2+(j-n1)^2)/(a3*a3))/(pi*a3*a3); % 高斯函数 end end nr3 = imfilter(mr, e, 'conv', 'replicate'); ng3 = imfilter(mg, e, 'conv', 'replicate'); nb3 = imfilter(mb, e, 'conv', 'replicate'); % 卷积滤波 ur3 = log(nr3); ug3 = log(ng3); ub3 = log(nb3); tr3 = log(mr+eps); tg3 = log(mg+eps); tb3 = log(mb+eps); yr3 = (tr3-ur3)/3; yg3 = (tg3-ug3)/3; yb3 = (tb3-ub3)/3; dr = yr1 + yr2 + yr3; dg = yg1 + yg2 + yg3; db = yb1 + yb2 + yb3; % 将三个去雾图像合并 cr = im2uint8(dr); cg = im2uint8(dg); cb = im2uint8(db); z = cat(3, cr, cg, cb); wu2 = rgb2gray(z); % 显示原图、去雾图像以及两者的灰度直方图 figure(2) subplot(2,2,1), imshow(I); title('原图'); subplot(2,2,2), imshow(z); title('MSR去雾后'); subplot(2,2,3), imhist(wu1); title('原图-灰度'); subplot(2,2,4), imhist(wu2); title('MSR去雾后-灰度'); ```

5G NR PDSCH DMRS 解扰matlab模拟全流程代码

以下是5G NR PDSCH DMRS 解扰matlab模拟全流程代码: ```matlab % 5G NR PDSCH DMRS 解扰matlab模拟全流程代码 % 设置参数值 N_RB = 100; % 资源块数 N_sc_RB = 12; % 每个资源块的子载波数 N_SC = N_RB*N_sc_RB; % 总的子载波数 N_symbs_per_slot = 14; % 每个时隙的OFDM符号数 N_bits_per_symb = 2*N_sc_RB*7; % 每个OFDM符号中的比特数 N_bits = N_symbs_per_slot*N_bits_per_symb; % 每个时隙的总比特数 N_layers = 2; % 层数 q_m = 4; % 星座中的符号数 N_RE = N_SC*N_symbs_per_slot; % 一个时隙中的总资源元素数 R = N_bits/N_RE; % 信息速率 % 生成随机数据 data_bits = randi([0,1],N_bits,1); % 生成QPSK调制的星座图 qpsk_symbs = zeros(1,q_m); qpsk_symbs(1) = complex(1,1); qpsk_symbs(2) = complex(-1,1); qpsk_symbs(3) = complex(-1,-1); qpsk_symbs(4) = complex(1,-1); % 将随机数据映射到星座图 data_symbs = zeros(N_RE*N_layers,1); for i=1:N_RE*N_layers data_symbs(i) = qpsk_symbs(bi2de(data_bits((i-1)*2+1:i*2)+1,'left-msb')+1); end % 生成PDSCH DMRS符号序列 pdsch_dmrs_symbs = zeros(N_RE,1); for i=1:N_RE n_SCID = mod(floor((i-1)/N_sc_RB),2); n_RS = mod(i-1,N_sc_RB); if (n_RS<4) pdsch_dmrs_symbs(i) = complex(1,1); else alpha = 2*pi/3*(n_SCID+floor(n_RS/4)); pdsch_dmrs_symbs(i) = complex(cos(alpha),sin(alpha)); end end % 生成PDSCH DMRS矩阵 pdsch_dmrs_matrix = zeros(N_RE,N_layers); for i=1:N_layers pdsch_dmrs_matrix(:,i) = pdsch_dmrs_symbs; end % 生成PDSCH符号序列 pdsch_symbs = data_symbs.*pdsch_dmrs_matrix; % 生成OFDM符号序列 ofdm_symbs = zeros(N_SC,N_symbs_per_slot,N_layers); for i=1:N_layers ofdm_symbs(:,:,i) = ifft(pdsch_symbs(:,i),N_SC); end % 添加循环前缀 ofdm_symbs_cp = zeros(N_SC+N_sc_RB,N_symbs_per_slot,N_layers); ofdm_symbs_cp(1:N_sc_RB,:,:) = ofdm_symbs(N_SC-N_sc_RB+1:N_SC,:,:); ofdm_symbs_cp(N_sc_RB+1:N_SC+N_sc_RB,:,:) = ofdm_symbs(:,:,:); ofdm_symbs_cp(:,:,1) = [ofdm_symbs_cp(:,N_symbs_per_slot,:);ofdm_symbs_cp(:,:,1)]; for i=2:N_symbs_per_slot ofdm_symbs_cp(:,:,i) = [ofdm_symbs_cp(:,i-1,i);ofdm_symbs_cp(:,:,i)]; end % 将OFDM符号序列转换为时间域的信号 tx_signal = reshape(ofdm_symbs_cp,N_SC+N_sc_RB,N_symbs_per_slot*N_layers); % 解扰PDSCH符号序列 rx_data_symbs = pdsch_symbs./pdsch_dmrs_matrix; % 将PDSCH符号序列映射回比特序列 rx_data_bits = zeros(N_bits,1); for i=1:N_RE*N_layers rx_data_bits((i-1)*2+1:i*2) = de2bi(find(qpsk_symbs==rx_data_symbs(i))-1,2,'left-msb'); end % 计算误码率 num_errors = sum(xor(data_bits,rx_data_bits)); ber = num_errors/N_bits; ``` 上述代码实现了5G NR PDSCH DMRS解扰的全流程,包括随机数据生成、星座映射、PDSCH DMRS序列生成、PDSCH符号序列生成、OFDM符号序列生成、循环前缀添加、信号转换、PDSCH符号序列解扰、比特映射、误码率计算等步骤。

相关推荐

最新推荐

recommend-type

解决-BASH: /HOME/JAVA/JDK1.8.0_221/BIN/JAVA: 权限不够问题

主要介绍了解决-BASH: /HOME/JAVA/JDK1.8.0_221/BIN/JAVA: 权限不够的问题,需要的朋友可以参考下
recommend-type

模拟技术中的高速模数转换器的INL和DNL特性测试

近来,具有出色静态和动态特性的高性能模数...对于一个理想ADC,其微分非线性为DNL = 0LSB,也就是说每个模拟量化台阶等于1LSB(1LSB = VFSR/2N,其中VFSR为满量程电压,N是ADC的分辨率),跳变值之间的间隔为精确的1
recommend-type

hy-1c数据读取.docx

海洋1C数据读取与MATLAB应用 海洋1C数据是海洋遥感领域的一个重要数据源,对于研究海洋环境和气候变化的科学家来说是一个非常重要的资源。然而,对于这些数据的读取和应用却是一个较为复杂的过程,需要具备一定的...
recommend-type

基于MATLAB-GUI的简易计算器设计.docx

基于MATLAB-GUI的简易计算器设计,基于MATLAB GUI的计算器设计是利用GUIDE创建图形用户界面进行计算器设计。设计计算器时,主要是考虑到计算器的易用性、功能的常用程度进行计算器界面与功能的设计。通过调整控件和...
recommend-type

模板059.pptx

论文答辩ppt模板
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。