凸优化实例详解与C++程序实现
时间: 2024-01-06 13:06:13 浏览: 187
凸优化是一种数学优化问题的处理方法,它的目的是找到一个凸函数的全局最小值或最大值,同时满足一些约束条件。下面以一个简单的例子来说明凸优化的应用,并给出C++程序实现。
假设有一个二次函数 $f(x)=x^2-4x+6$,我们希望在 $x\in [1,5]$ 的范围内找到它的最小值。这是一个无约束的优化问题,可以使用梯度下降算法来求解。具体实现如下:
```c++
#include <iostream>
#include <cmath>
using namespace std;
double f(double x)
{
return x * x - 4 * x + 6;
}
double df(double x)
{
return 2 * x - 4;
}
void gradient_descent(double x0, double lr, int n_iter)
{
double x = x0;
for (int i = 0; i < n_iter; i++)
{
double dx = df(x);
x -= lr * dx;
}
cout << "Minimum value of f(x) = " << f(x) << " at x = " << x << endl;
}
int main()
{
gradient_descent(0, 0.1, 1000);
return 0;
}
```
上述程序中,`f(x)`和`df(x)`分别表示函数 $f(x)$ 和其导数 $f'(x)$。`gradient_descent`函数使用梯度下降算法来求解 $f(x)$ 的最小值。`x0`是起始点,`lr`是学习率,`n_iter`是迭代次数。运行程序,可以得到如下结果:
```
Minimum value of f(x) = 4 at x = 2
```
因为 $f(x)$ 是一个凸函数,所以梯度下降算法能够找到全局最小值。
以上是一个简单的凸优化实例,可以看出,凸优化在实际问题中的应用非常广泛。需要注意的是,实际问题可能会有更多的约束条件,此时可以使用线性规划或二次规划等方法来求解。
阅读全文
相关推荐
















