res_date_dict = {} y_test = list(y_test) for i in range(len(test_dates)): if test_dates[i] not in res_date_dict: y_pred = y_forest_pred_test[i] # print("y_test[i]: ",type(y_test) ) y_true = y_test[i] if y_true == 0: continue abs_rate = math.fabs(y_pred - y_true) / y_true if abs_rate <= 0.1 : res_date_dict[test_dates[i]] = [y_pred, y_true] if len(res_date_dict) == 10: break 这段代码什么意思
时间: 2024-04-02 12:33:52 浏览: 65
这段代码是用来计算随机森林模型在测试集上的预测值和真实值,并将预测值与真实值的绝对误差率小于等于0.1的日期及对应的预测值和真实值存储在一个字典res_date_dict中。具体实现过程是,首先定义一个空字典res_date_dict和一个列表y_test,然后遍历测试集日期test_dates,对于每个日期,如果该日期不在字典res_date_dict中,就取出该日期对应的预测值和真实值,计算它们的绝对误差率abs_rate,如果abs_rate小于等于0.1,则将该日期及对应的预测值和真实值存储在字典res_date_dict中。如果字典res_date_dict中已经存储了10个日期及对应的预测值和真实值,就停止遍历。最后返回字典res_date_dict。
相关问题
res_date_dict = {} y_test = list(y_test) for i in range(len(test_dates)): if test_dates[i] not in res_date_dict: y_pred = y_forest_pred_test[i] # print("y_test[i]: ",type(y_test) ) y_true = y_test[i] if y_true == 0: continue abs_rate = math.fabs(y_pred - y_true) / y_true if abs_rate <= 0.1 : res_date_dict[test_dates[i]] = [y_pred, y_true] if len(res_date_dict) == 10: break
根据你的代码,我猜测你正在进行一个随机森林模型的测试,并且你正在创建一个名为`res_date_dict`的字典来存储测试结果。你将测试数据集中的日期存储在`test_dates`列表中,并且你正在将`y_test`转换为列表。接下来,你正在使用一个循环来遍历所有测试日期,并且如果该日期还没有在`res_date_dict`中,你将计算该日期的预测值`y_pred`和真实值`y_true`,并且如果`y_true`等于0,则跳过该日期。然后,如果绝对误差`abs_rate`小于等于0.1,你将在`res_date_dict`中为该日期存储`[y_pred, y_true]`。最后,如果`res_date_dict`的长度已经等于10,你将跳出循环。这个代码片段的目的是什么?
def build_sequences(text, window_size): #text:list of capacity x, y = [],[] for i in range(len(text) - window_size): sequence = text[i:i+window_size] target = text[i+1:i+1+window_size] x.append(sequence) y.append(target) return np.array(x), np.array(y) # 留一评估:一组数据为测试集,其他所有数据全部拿来训练 def get_train_test(data_dict, name, window_size=8): data_sequence=data_dict[name][1] train_data, test_data = data_sequence[:window_size+1], data_sequence[window_size+1:] train_x, train_y = build_sequences(text=train_data, window_size=window_size) for k, v in data_dict.items(): if k != name: data_x, data_y = build_sequences(text=v[1], window_size=window_size) train_x, train_y = np.r_[train_x, data_x], np.r_[train_y, data_y] return train_x, train_y, list(train_data), list(test_data) def relative_error(y_test, y_predict, threshold): true_re, pred_re = len(y_test), 0 for i in range(len(y_test)-1): if y_test[i] <= threshold >= y_test[i+1]: true_re = i - 1 break for i in range(len(y_predict)-1): if y_predict[i] <= threshold: pred_re = i - 1 break return abs(true_re - pred_re)/true_re def evaluation(y_test, y_predict): mae = mean_absolute_error(y_test, y_predict) mse = mean_squared_error(y_test, y_predict) rmse = sqrt(mean_squared_error(y_test, y_predict)) return mae, rmse def setup_seed(seed): np.random.seed(seed) # Numpy module. random.seed(seed) # Python random module. os.environ['PYTHONHASHSEED'] = str(seed) # 为了禁止hash随机化,使得实验可复现。 torch.manual_seed(seed) # 为CPU设置随机种子 if torch.cuda.is_available(): torch.cuda.manual_seed(seed) # 为当前GPU设置随机种子 torch.cuda.manual_seed_all(seed) # if you are using multi-GPU,为所有GPU设置随机种子 torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True
这段代码主要是用来进行数据预处理和模型评估的。其中,`build_sequences`函数用来将数据转化为序列数据,`get_train_test`函数用来获取训练集和测试集,`relative_error`函数用来计算相对误差,`evaluation`函数用来计算模型的MAE、MSE和RMSE指标。另外,`setup_seed`函数用来设置随机种子,以保证实验的可复现性。整个代码涉及到了numpy、random、os和torch等库的使用,可以用来进行深度学习相关的实验和研究。
阅读全文