elasticsearchTemplate.search 聚合统计
时间: 2024-05-13 10:19:53 浏览: 91
aggs-matrix-stats-client-6.8.3-API文档-中文版.zip
ElasticsearchTemplate.search()方法可以用于执行各种类型的搜索操作,包括聚合统计。聚合统计是一种高级搜索技术,用于对搜索结果进行分组、计数和统计等操作。
下面是一个示例代码,演示如何使用ElasticsearchTemplate.search()方法进行聚合统计:
```java
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.bucket.histogram.DateHistogramInterval;
import org.elasticsearch.search.aggregations.bucket.histogram.Histogram;
import org.elasticsearch.search.aggregations.metrics.avg.Avg;
import org.elasticsearch.search.aggregations.metrics.sum.Sum;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.stereotype.Component;
import java.util.Date;
@Component
public class MyAggregation {
@Autowired
private ElasticsearchTemplate elasticsearchTemplate;
public void aggregation() {
Histogram dateHistogram = AggregationBuilders.dateHistogram("date_histogram")
.field("timestamp")
.dateHistogramInterval(DateHistogramInterval.HOUR)
.subAggregation(AggregationBuilders.avg("average").field("value"))
.subAggregation(AggregationBuilders.sum("sum").field("value"))
.subAggregation(AggregationBuilders.count("count").field("value"))
.subAggregation(AggregationBuilders.max("max").field("value"))
.subAggregation(AggregationBuilders.min("min").field("value"));
SearchQuery searchQuery = new NativeSearchQueryBuilder()
.withQuery(QueryBuilders.matchAllQuery())
.withSearchType(SearchType.QUERY_THEN_FETCH)
.withIndices("my_index")
.withTypes("my_type")
.addAggregation(dateHistogram)
.build();
Aggregations aggregations = elasticsearchTemplate.query(searchQuery, new ResultsExtractor<Aggregations>() {
@Override
public Aggregations extract(SearchResponse response) {
return response.getAggregations();
}
});
Histogram histogram = aggregations.get("date_histogram");
for (Histogram.Bucket entry : histogram.getBuckets()) {
Date key = (Date) entry.getKey();
long docCount = entry.getDocCount();
Avg avg = entry.getAggregations().get("average");
Sum sum = entry.getAggregations().get("sum");
long count = entry.getAggregations().get("count").getValue();
double max = entry.getAggregations().get("max").getValue();
double min = entry.getAggregations().get("min").getValue();
System.out.println("Key: " + key + ", Doc count: " + docCount + ", Average: " + avg.getValue() + ", Sum: " + sum.getValue() + ", Count: " + count + ", Max: " + max + ", Min: " + min);
}
}
}
```
在上面的示例代码中,我们定义了一个名为date_histogram的直方图聚合,它将搜索结果按照时间戳字段进行分组,并且为每个分组计算了平均值、总和、计数、最大值和最小值。我们将该聚合添加到搜索查询中,并使用ElasticsearchTemplate.query()方法执行查询。最后,我们迭代直方图聚合的每个分组,并打印出每个分组的统计信息。
这只是一个简单的聚合统计示例,Elasticsearch支持更多类型的聚合,包括桶聚合、指标聚合、嵌套聚合等。你可以根据自己的需求选择适合的聚合类型,实现更加复杂和有用的聚合统计功能。
阅读全文