smoteenn处理后的数据与原数据关系与评估所分类aucpython代码
时间: 2024-03-09 08:49:50 浏览: 155
SMOTE-ENN是一种结合了SMOTE过采样和ENN欠采样的方法,它可以同时处理类别不平衡和样本重叠的问题,得到更加平衡的数据集。使用SMOTE-ENN处理后的数据与原数据的关系是,它会删除一些重叠的样本和噪声样本,并通过SMOTE算法生成一些新的合成样本,使得处理后的数据更加平衡且具有代表性。
以下是使用Python对SMOTE-ENN处理后的数据进行分类并计算AUC的代码示例:
```python
from imblearn.combine import SMOTEENN
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score
# 生成不平衡的分类数据
X, y = make_classification(n_classes=2, class_sep=2,
weights=[0.1, 0.9], n_informative=3,
n_redundant=1, flip_y=0, n_features=20,
n_clusters_per_class=1, n_samples=1000,
random_state=10)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=10)
# 使用SMOTE-ENN处理训练数据
smote_enn = SMOTEENN(random_state=10)
X_resampled, y_resampled = smote_enn.fit_resample(X_train, y_train)
# 训练逻辑回归模型
clf = LogisticRegression(random_state=10)
clf.fit(X_resampled, y_resampled)
# 预测测试集并计算AUC值
y_pred = clf.predict_proba(X_test)[:, 1]
auc = roc_auc_score(y_test, y_pred)
print("AUC score:", auc)
```
以上代码示例中,我们首先使用`make_classification`生成一个不平衡的分类数据集,然后将其划分为训练集和测试集。接着,我们使用SMOTE-ENN处理训练数据,得到平衡的数据集。最后,我们使用逻辑回归模型对处理后的训练数据进行训练,并预测测试集,并计算AUC值作为模型性能的评估指标。
阅读全文
相关推荐


















