train_l=int(0.75*l) X_train=r[0:train_l,0:b-1] Y_train=r[0:train_l,b-1] X_test=r[train_l:l,0:b-1] Y_test=r[train_l:l,b-1] X_train = normalize(X_train, axis=0, norm='max') X_test = normalize(X_test, axis=0, norm='max') scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) # In[58]: def mySvm(training, training_labels, testing, testing_labels): #Support Vector Machine start = datetime.datetime.now() clf = svm.SVC() clf.fit(training, training_labels) print ("+++++++++ Finishing training the SVM classifier ++++++++++++") result = clf.predict(testing) print ("SVM accuracy:", accuracy_score(testing_labels, result)) #keep the time finish = datetime.datetime.now() print ((finish-start).seconds)帮我解释一下这段代码
时间: 2023-06-27 09:03:15 浏览: 158
这段代码实现了一个支持向量机分类器的训练和测试过程,并且输出了分类器的准确率和训练时间。
首先,代码把数据集分成了训练集和测试集。其中,前75%的数据作为训练集,后25%的数据作为测试集。接着,代码对训练集和测试集进行了归一化处理和标准化处理,以便更好地训练和测试分类器。
接下来,代码定义了一个函数 `mySvm()`,用于训练和测试支持向量机分类器。该函数接受四个参数,分别是训练集数据、训练集标签、测试集数据和测试集标签。
在函数内部,首先记录了开始训练的时间。然后,使用 sklearn 库中的 svm.SVC() 函数创建了一个支持向量机分类器,并使用训练集数据和标签进行训练。训练完成后,使用分类器对测试集数据进行预测,并计算出分类器的准确率。最后,输出准确率和训练时间。
总体来说,这段代码实现了一个简单的支持向量机分类器的训练和测试过程,并且给出了分类器的准确率和训练时间。
相关问题
import os import cv2 import numpy as np def load_data(file_dir): all_num = 4000 train_num = int(all_num * 0.75) cats = [] label_cats = [] dogs = [] label_dogs = [] for file in os.listdir(file_dir): file="\\"+file name = file.split(sep='.') if 'cat' in name[0]: cats.append(file_dir + file) label_cats.append(0) else: if 'dog' in name[0]: dogs.append(file_dir + file) label_dogs.append(1) image_list = np.hstack((cats,dogs)) label_list = np.hstack((label_cats, label_dogs)) temp = np.array([image_list, label_list]) # 矩阵转置 temp = temp.transpose() # 打乱顺序 np.random.shuffle(temp) # print(temp) # 取出第一个元素作为 image 第二个元素作为 label image_list = temp[:, 0] label1_train = temp[:train_num, 1] # print(label1_train) # 单出,去掉单字符 label_train = [int(y) for y in label1_train] # print(label_train) label1_test = temp[train_num:, 1] label_test = [int(y) for y in label1_test] data_test=[] data_train = [] for i in range (all_num): if i <train_num: image= image_list[i] image = cv2.imread(image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #将图片转换成RGB格式 image = cv2.resize(image, (28, 28)) image = image.astype('float32') image = np.array(image)/255#归一化[0,1] image=image.reshape(-1,28,28) data_train.append(image) # label_train.append(label_list[i]) else: image = image_list[i] image = cv2.imread(image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) image = cv2.resize(image, (28, 28)) image = image.astype('float32') image = np.array(image) / 255 image = image.reshape(-1, 28, 28) data_test.append(image) # label_test.append(label_list[i]) data_train=np.array(data_train) label_train = np.array(label_train) data_test = np.array(data_test) label_test = np.array(label_test) return data_train,label_train,data_test, label_test
这段代码是定义了一个函数load_data,用来加载数据集,并将数据集划分为训练集和测试集。函数接收一个参数file_dir,表示数据集所在的路径。首先,定义了all_num和train_num两个变量,用来表示数据集的总数和训练集的数量,其中训练集的数量是总数的75%。然后,定义了四个空列表,分别用来存储猫的图片路径、猫的标签、狗的图片路径和狗的标签。接着,使用os.listdir函数遍历数据集路径下的所有文件,对每个文件进行判断,如果文件名中包含'cat'字符串,则将该文件的路径添加到cats列表中,并将标签0添加到label_cats列表中;如果文件名中包含'dog'字符串,则将该文件的路径添加到dogs列表中,并将标签1添加到label_dogs列表中。然后,使用numpy.hstack函数将猫和狗的图片路径和标签拼接成两个一维数组image_list和label_list。接着,使用numpy.array函数将image_list和label_list拼接成一个二维数组temp,并将其转置,使得图片路径和标签分别位于temp的第一列和第二列。然后,使用numpy.random.shuffle函数对temp进行打乱顺序操作。接着,将temp的第一列(即图片路径)赋值给image_list,将temp的前train_num行的第二列(即标签)赋值给label1_train,将temp的后面部分的第二列(即标签)赋值给label1_test。然后,将label1_train和label1_test从字符串类型转换为整型,并分别赋值给label_train和label_test。最后,调用前面提到的数据预处理代码,将image_list中的每张图片进行预处理,并将处理后的图片数据分别添加到data_train和data_test列表中,并将列表转换为numpy数组类型。最后,函数返回data_train、label_train、data_test和label_test四个变量。
def load_data(file_dir): all_num = 4000 train_num = int(all_num * 0.75) cats = [] label_cats = [] dogs = [] label_dogs = [] for file in os.listdir(file_dir): file="\\"+file name = file.split(sep='.') if 'cat' in name[0]: cats.append(file_dir + file) label_cats.append(0) else: if 'dog' in name[0]: dogs.append(file_dir + file) label_dogs.append(1) image_list = np.hstack((cats,dogs)) label_list = np.hstack((label_cats, label_dogs)) temp = np.array([image_list, label_list])
这段代码是一个用于加载数据的函数,主要功能是从指定路径 file_dir 中读取图片文件,并将它们转换为 numpy 数组。具体来说,该函数首先定义了一些变量,包括总共的图片数量 all_num,训练集的图片数量 train_num,以及用于存储图片路径和标签的空列表 cats、label_cats、dogs、label_dogs。接着,使用 os.listdir(file_dir) 函数遍历 file_dir 目录下的所有文件,并将其中的猫和狗的图片路径和标签分别存储到 cats、label_cats、dogs、label_dogs 中。这里使用了字符串操作和列表操作,通过判断文件名中是否包含 'cat' 和 'dog' 来确定图片的标签。然后,使用 np.hstack 函数将 cats 和 dogs 列表合并成一个 image_list 列表,将 label_cats 和 label_dogs 列表合并成一个 label_list 列表。最后,使用 np.array 将 image_list 和 label_list 列表转换为 numpy 数组,并返回结果。需要注意的是,该函数并没有对图片进行读取和预处理的操作,只是简单地将图片路径和标签存储到了列表中。
阅读全文