train_l=int(0.75*l) X_train=r[0:train_l,0:b-1] Y_train=r[0:train_l,b-1] X_test=r[train_l:l,0:b-1] Y_test=r[train_l:l,b-1] X_train = normalize(X_train, axis=0, norm='max') X_test = normalize(X_test, axis=0, norm='max') scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) # In[58]: def mySvm(training, training_labels, testing, testing_labels): #Support Vector Machine start = datetime.datetime.now() clf = svm.SVC() clf.fit(training, training_labels) print ("+++++++++ Finishing training the SVM classifier ++++++++++++") result = clf.predict(testing) print ("SVM accuracy:", accuracy_score(testing_labels, result)) #keep the time finish = datetime.datetime.now() print ((finish-start).seconds)帮我解释一下这段代码

时间: 2023-06-27 16:03:15 浏览: 165
这段代码实现了一个支持向量机分类器的训练和测试过程,并且输出了分类器的准确率和训练时间。 首先,代码把数据集分成了训练集和测试集。其中,前75%的数据作为训练集,后25%的数据作为测试集。接着,代码对训练集和测试集进行了归一化处理和标准化处理,以便更好地训练和测试分类器。 接下来,代码定义了一个函数 `mySvm()`,用于训练和测试支持向量机分类器。该函数接受四个参数,分别是训练集数据、训练集标签、测试集数据和测试集标签。 在函数内部,首先记录了开始训练的时间。然后,使用 sklearn 库中的 svm.SVC() 函数创建了一个支持向量机分类器,并使用训练集数据和标签进行训练。训练完成后,使用分类器对测试集数据进行预测,并计算出分类器的准确率。最后,输出准确率和训练时间。 总体来说,这段代码实现了一个简单的支持向量机分类器的训练和测试过程,并且给出了分类器的准确率和训练时间。
相关问题

import os import cv2 import numpy as np def load_data(file_dir): all_num = 4000 train_num = int(all_num * 0.75) cats = [] label_cats = [] dogs = [] label_dogs = [] for file in os.listdir(file_dir): file="\\"+file name = file.split(sep='.') if 'cat' in name[0]: cats.append(file_dir + file) label_cats.append(0) else: if 'dog' in name[0]: dogs.append(file_dir + file) label_dogs.append(1) image_list = np.hstack((cats,dogs)) label_list = np.hstack((label_cats, label_dogs)) temp = np.array([image_list, label_list]) # 矩阵转置 temp = temp.transpose() # 打乱顺序 np.random.shuffle(temp) # print(temp) # 取出第一个元素作为 image 第二个元素作为 label image_list = temp[:, 0] label1_train = temp[:train_num, 1] # print(label1_train) # 单出,去掉单字符 label_train = [int(y) for y in label1_train] # print(label_train) label1_test = temp[train_num:, 1] label_test = [int(y) for y in label1_test] data_test=[] data_train = [] for i in range (all_num): if i <train_num: image= image_list[i] image = cv2.imread(image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #将图片转换成RGB格式 image = cv2.resize(image, (28, 28)) image = image.astype('float32') image = np.array(image)/255#归一化[0,1] image=image.reshape(-1,28,28) data_train.append(image) # label_train.append(label_list[i]) else: image = image_list[i] image = cv2.imread(image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) image = cv2.resize(image, (28, 28)) image = image.astype('float32') image = np.array(image) / 255 image = image.reshape(-1, 28, 28) data_test.append(image) # label_test.append(label_list[i]) data_train=np.array(data_train) label_train = np.array(label_train) data_test = np.array(data_test) label_test = np.array(label_test) return data_train,label_train,data_test, label_test

这段代码是定义了一个函数load_data,用来加载数据集,并将数据集划分为训练集和测试集。函数接收一个参数file_dir,表示数据集所在的路径。首先,定义了all_num和train_num两个变量,用来表示数据集的总数和训练集的数量,其中训练集的数量是总数的75%。然后,定义了四个空列表,分别用来存储猫的图片路径、猫的标签、狗的图片路径和狗的标签。接着,使用os.listdir函数遍历数据集路径下的所有文件,对每个文件进行判断,如果文件名中包含'cat'字符串,则将该文件的路径添加到cats列表中,并将标签0添加到label_cats列表中;如果文件名中包含'dog'字符串,则将该文件的路径添加到dogs列表中,并将标签1添加到label_dogs列表中。然后,使用numpy.hstack函数将猫和狗的图片路径和标签拼接成两个一维数组image_list和label_list。接着,使用numpy.array函数将image_list和label_list拼接成一个二维数组temp,并将其转置,使得图片路径和标签分别位于temp的第一列和第二列。然后,使用numpy.random.shuffle函数对temp进行打乱顺序操作。接着,将temp的第一列(即图片路径)赋值给image_list,将temp的前train_num行的第二列(即标签)赋值给label1_train,将temp的后面部分的第二列(即标签)赋值给label1_test。然后,将label1_train和label1_test从字符串类型转换为整型,并分别赋值给label_train和label_test。最后,调用前面提到的数据预处理代码,将image_list中的每张图片进行预处理,并将处理后的图片数据分别添加到data_train和data_test列表中,并将列表转换为numpy数组类型。最后,函数返回data_train、label_train、data_test和label_test四个变量。

def load_data(file_dir): all_num = 4000 train_num = int(all_num * 0.75) cats = [] label_cats = [] dogs = [] label_dogs = [] for file in os.listdir(file_dir): file="\\"+file name = file.split(sep='.') if 'cat' in name[0]: cats.append(file_dir + file) label_cats.append(0) else: if 'dog' in name[0]: dogs.append(file_dir + file) label_dogs.append(1) image_list = np.hstack((cats,dogs)) label_list = np.hstack((label_cats, label_dogs)) temp = np.array([image_list, label_list])

这段代码是一个用于加载数据的函数,主要功能是从指定路径 file_dir 中读取图片文件,并将它们转换为 numpy 数组。具体来说,该函数首先定义了一些变量,包括总共的图片数量 all_num,训练集的图片数量 train_num,以及用于存储图片路径和标签的空列表 cats、label_cats、dogs、label_dogs。接着,使用 os.listdir(file_dir) 函数遍历 file_dir 目录下的所有文件,并将其中的猫和狗的图片路径和标签分别存储到 cats、label_cats、dogs、label_dogs 中。这里使用了字符串操作和列表操作,通过判断文件名中是否包含 'cat' 和 'dog' 来确定图片的标签。然后,使用 np.hstack 函数将 cats 和 dogs 列表合并成一个 image_list 列表,将 label_cats 和 label_dogs 列表合并成一个 label_list 列表。最后,使用 np.array 将 image_list 和 label_list 列表转换为 numpy 数组,并返回结果。需要注意的是,该函数并没有对图片进行读取和预处理的操作,只是简单地将图片路径和标签存储到了列表中。
阅读全文

相关推荐

大家在看

recommend-type

pjsip开发指南

pjsip是一个开源的sip协议栈,这个文档主要对sip开发的框架进行说明
recommend-type

KEMET_聚合物钽电容推介资料

KEMET_聚合物钽电容推介资料-内部资料,英文版!
recommend-type

变频器设计资料中关于驱动电路的设计

关于IGBT驱动电路设计!主要介绍了三菱智能模块的应用.
recommend-type

网络信息系统应急预案-网上银行业务持续性计划与应急预案

包含4份应急预案 网络信息系统应急预案.doc 信息系统应急预案.DOCX 信息系统(系统瘫痪)应急预案.doc 网上银行业务持续性计划与应急预案.doc
recommend-type

毕业设计&课设-MATLAB的光场工具箱.zip

matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随

最新推荐

recommend-type

(179722824)三相异步电机矢量控制仿真模型

三相异步电机矢量控制仿真模型。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

一次并发导致错误分析与总结

一次并发导致错误分析
recommend-type

025 - 快手直播词和控场话术.docx

025 - 快手直播词和控场话术
recommend-type

第4章 管理信息库2024v2.pdf

第4章 管理信息库2024v2
recommend-type

(178729196)pytorch人脸表情识别数据集(2w8训练集+7k测试集)

在本文中,我们将深入探讨如何使用PyTorch进行人脸表情识别。这个数据集包含28,000张训练图像和7,000张测试图像,专为Python开发人员设计,以研究和构建深度学习模型来理解人类的情绪。PyTorch是一个强大的深度学习框架,因其灵活性和易用性而被广泛采用,它提供了动态计算图的功能,便于构建和调试神经网络。 让我们了解人脸表情识别的基本概念。这是一个计算机视觉任务,旨在根据面部特征识别七种基本表情:高兴、悲伤、惊讶、恐惧、愤怒、厌恶和中立。这通常涉及到图像处理、特征提取和机器学习算法。 要开始使用这个数据集,你需要做以下步骤: 1. **数据预处理**:解压Datawhale_人脸情绪识别_数据集文件,然后对图像进行预处理。这可能包括调整大小、归一化像素值到0-1区间、以及数据增强,如随机翻转、裁剪或旋转,以增加模型的泛化能力。 2. **数据加载器**:使用PyTorch的`torch.utils.data.Dataset`和`DataLoader`类来创建自定义数据加载器。这将使你能批量加载数据,并在训练过程中高效地处理图像。 3. **模型构建**:选择一个适合任务的卷
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"