matlab利用GAN生成图像
时间: 2023-09-16 16:10:28 浏览: 124
GAN_matlab_图像分类和生成
5星 · 资源好评率100%
GAN(Generative Adversarial Network)是一种生成式模型,能够生成高质量的图像。在MATLAB中,可以使用Deep Learning Toolbox中的GAN函数来实现GAN的图像生成。
以下是一个简单的示例代码,它使用GAN生成手写数字图像:
```matlab
% 导入手写数字数据集
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
'nndatasets','DigitDataset');
digitData = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
% 定义生成器网络
generator = [
imageInputLayer([1 1 100],'Normalization','none','Name','in')
fullyConnectedLayer(7*7*256,'Name','fc')
reluLayer('Name','relu1')
transposedConv2dLayer(6,256,'Stride',2,'Cropping',2,'Name','tconv1')
batchNormalizationLayer('Name','bn1')
reluLayer('Name','relu2')
transposedConv2dLayer(6,128,'Stride',2,'Cropping',2,'Name','tconv2')
batchNormalizationLayer('Name','bn2')
reluLayer('Name','relu3')
transposedConv2dLayer(6,64,'Stride',2,'Cropping',2,'Name','tconv3')
batchNormalizationLayer('Name','bn3')
reluLayer('Name','relu4')
transposedConv2dLayer(6,1,'Stride',2,'Cropping',2,'Name','tconv4')
tanhLayer('Name','tanh')];
% 定义判别器网络
discriminator = [
imageInputLayer([28 28 1],'Name','in')
convolution2dLayer(3,64,'Stride',2,'Padding',1,'Name','conv1')
leakyReluLayer(0.2,'Name','lrelu1')
convolution2dLayer(3,128,'Stride',2,'Padding',1,'Name','conv2')
batchNormalizationLayer('Name','bn2')
leakyReluLayer(0.2,'Name','lrelu2')
convolution2dLayer(3,256,'Stride',2,'Padding',1,'Name','conv3')
batchNormalizationLayer('Name','bn3')
leakyReluLayer(0.2,'Name','lrelu3')
convolution2dLayer(3,512,'Stride',2,'Padding',1,'Name','conv4')
batchNormalizationLayer('Name','bn4')
leakyReluLayer(0.2,'Name','lrelu4')
fullyConnectedLayer(1,'Name','fc')
sigmoidLayer('Name','sigmoid')];
% 定义GAN
gan = ganNetwork(generator,discriminator);
% 训练GAN
numEpochs = 50;
miniBatchSize = 128;
plots = "training-progress";
learnRate = 0.0002;
gradientDecayFactor = 0.5;
squaredGradientDecayFactor = 0.999;
executionEnvironment = "auto";
options = trainingOptions('adam', ...
'MaxEpochs',numEpochs, ...
'MiniBatchSize',miniBatchSize, ...
'Plots',plots, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.1, ...
'LearnRateDropPeriod',30, ...
'InitialLearnRate',learnRate, ...
'GradientDecayFactor',gradientDecayFactor, ...
'SquaredGradientDecayFactor',squaredGradientDecayFactor, ...
'ExecutionEnvironment',executionEnvironment);
% 开始训练
[trainedGAN,trainingInfo] = trainNetwork(digitData,gan,options);
```
训练完成后,可以使用以下代码生成手写数字图像:
```matlab
% 生成手写数字图像
numImages = 16;
noiseVector = randn(1,1,100,numImages);
generatedImages = predict(trainedGAN.Generator,noiseVector);
imshow(imtile(generatedImages));
```
这将生成16张手写数字图像。
阅读全文