verilog写出FFT算法
时间: 2023-09-17 17:11:26 浏览: 138
基于verilog的FFT算法实现,64点
5星 · 资源好评率100%
FFT(快速傅里叶变换)是一种高效的算法,它可以将离散时间信号转换为频域信号。在Verilog中,可以使用Butterfly模块来实现FFT算法。以下是一个基于蝴蝶操作的8点FFT的Verilog代码示例:
```
module fft_8_point(
input clk,
input rst,
input [7:0] data_in_r,
input [7:0] data_in_i,
output [7:0] data_out_r,
output [7:0] data_out_i
);
//定义常量
parameter N = 8;
parameter M = $clog2(N);
//定义临时变量
reg [7:0] x_r[N];
reg [7:0] x_i[N];
reg [7:0] y_r[N];
reg [7:0] y_i[N];
//定义蝴蝶操作模块
module butterfly(
input clk,
input [7:0] x_r,
input [7:0] x_i,
input [7:0] w_r,
input [7:0] w_i,
output [7:0] y_r,
output [7:0] y_i
);
//定义临时变量
reg [7:0] t1_r;
reg [7:0] t1_i;
reg [7:0] t2_r;
reg [7:0] t2_i;
//计算蝴蝶操作
assign t1_r = x_r + w_r;
assign t1_i = x_i + w_i;
assign t2_r = x_r - w_r;
assign t2_i = x_i - w_i;
//输出结果
assign y_r = t1_r;
assign y_i = t1_i;
endmodule
//定义蝴蝶操作模块的实例
butterfly butterfly0(
.clk(clk),
.x_r(x_r[0]),
.x_i(x_i[0]),
.w_r(0),
.w_i(0),
.y_r(y_r[0]),
.y_i(y_i[0])
);
butterfly butterfly1(
.clk(clk),
.x_r(x_r[1]),
.x_i(x_i[1]),
.w_r(-128),
.w_i(0),
.y_r(y_r[1]),
.y_i(y_i[1])
);
butterfly butterfly2(
.clk(clk),
.x_r(x_r[2]),
.x_i(x_i[2]),
.w_r(0),
.w_i(-128),
.y_r(y_r[2]),
.y_i(y_i[2])
);
butterfly butterfly3(
.clk(clk),
.x_r(x_r[3]),
.x_i(x_i[3]),
.w_r(114),
.w_i(-114),
.y_r(y_r[3]),
.y_i(y_i[3])
);
butterfly butterfly4(
.clk(clk),
.x_r(x_r[4]),
.x_i(x_i[4]),
.w_r(0),
.w_i(0),
.y_r(y_r[4]),
.y_i(y_i[4])
);
butterfly butterfly5(
.clk(clk),
.x_r(x_r[5]),
.x_i(x_i[5]),
.w_r(-114),
.w_i(114),
.y_r(y_r[5]),
.y_i(y_i[5])
);
butterfly butterfly6(
.clk(clk),
.x_r(x_r[6]),
.x_i(x_i[6]),
.w_r(0),
.w_i(128),
.y_r(y_r[6]),
.y_i(y_i[6])
);
butterfly butterfly7(
.clk(clk),
.x_r(x_r[7]),
.x_i(x_i[7]),
.w_r(114),
.w_i(114),
.y_r(y_r[7]),
.y_i(y_i[7])
);
//主计算过程
always @(posedge clk) begin
//重排输入序列
for (i = 0; i < N; i = i + 1) begin
x_r[i] <= data_in_r[bitrevorder(i)];
x_i[i] <= data_in_i[bitrevorder(i)];
end
//执行M级蝴蝶操作
for (m = 0; m < M; m = m + 1) begin
n = 2**m;
k = 2**(M-m-1);
for (i = 0; i < N/(2*n); i = i + 1) begin
for (j = 0; j < n; j = j + 1) begin
butterfly #(8) bf(
.clk(clk),
.x_r(x_r[i*n+j]),
.x_i(x_i[i*n+j]),
.w_r(cos(j*k)),
.w_i(-sin(j*k)),
.y_r(y_r[i*n+j]),
.y_i(y_i[i*n+j])
);
end
end
for (i = 0; i < N; i = i + 1) begin
x_r[i] <= y_r[i];
x_i[i] <= y_i[i];
end
end
//输出结果
for (i = 0; i < N; i = i + 1) begin
data_out_r[bitrevorder(i)] <= y_r[i];
data_out_i[bitrevorder(i)] <= y_i[i];
end
end
endmodule
```
这段代码实现了一个8点FFT算法,使用了8个Butterfly模块来进行计算。在主计算过程中,先将输入序列进行重排,然后执行M级蝴蝶操作。最后输出结果。
阅读全文