优化这段代码test6['开始从事某工作年份']=test6['开始从事某工作年份'].apply(lambda x:str(x)[:4])
时间: 2023-10-09 13:04:22 浏览: 77
这段代码的功能是将test6数据集中“开始从事某工作年份”列的每个元素的前4个字符提取出来,然后重新赋值给“开始从事某工作年份”列。这里有一个优化建议:可以使用str提供的slice方法来进行字符串切片,代码如下所示:
```
test6['开始从事某工作年份'] = test6['开始从事某工作年份'].str.slice(stop=4)
```
使用str的slice方法可以直接对字符串进行切片,不需要使用lambda函数进行处理。同时,代码的可读性也更加清晰。
相关问题
代码#合并训练数据和测试数据 datal = pd.concat([data_train ,data_test],axis =0) #处理 data _ received 属性、 date 属性 data1['date_received ']=data1['date_received'].astype('str'). apply ( lambda x : x . split ('.')[0]) datal [' date_received ']= pd . to_datetime (data1[' date_received ']) datal [' date ']= datal (' date '). astype (' str '). apply ( lambda x : x . split ('.')[0]) datal [' date ']= pd . to_datetime ( datal [' date '])报错name 'data1' is not defined解决
在代码中,第二行中的`data1`没有被定义,因此会报错。可以将第二行的`data1`改为`datal`,因为上一行已经定义了`datal`作为合并后的数据集。修改后的代码如下:
```python
# 合并训练数据和测试数据
datal = pd.concat([data_train, data_test], axis=0)
# 处理 data_received 属性、date属性
datal['date_received'] = datal['date_received'].astype('str').apply(
lambda x: x.split('.')[0])
datal['date_received'] = pd.to_datetime(datal['date_received'])
datal['date'] = datal['date'].astype('str').apply(
lambda x: x.split('.')[0])
datal['date'] = pd.to_datetime(datal['date'])
```
如何修改使得import pandas as pd import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split filename = 'D:/111/20news-18828.tar/20newsgroups.srv' with open(filename, 'r', encoding='UTF-8') as file: A = file.readlines() data = np.array(A) df = pd.DataFrame(data, columns=['text'])df['category'] = df['text'].apply(lambda x: x.split('\t')[0]) df['text'] = df['text'].apply(lambda x: x.split('\t')[1]) # 分割数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(df['text'], df['category'], random_state=42) # 对文本进行特征提取 tfidf = TfidfVectorizer(stop_words='english') X_train_tfidf = tfidf.fit_transform(X_train.astype(str)) X_test_tfidf = tfidf.transform(X_test.astype(str)) # 使用多项式朴素贝叶斯模型进行训练和预测 clf = MultinomialNB() clf.fit(X_train_tfidf, y_train) y_pred = clf.predict(X_test_tfidf) # 输出模型的准确率 print('Accuracy:', accuracy_score(y_test, y_pred))能够从我的文件中分类
你可以先将文件路径进行修改,确保能够正确读取文件。然后将文件中的每一行按照制表符进行分割,分成类别和文本两部分。接着使用`train_test_split`函数将数据集分割成训练集和测试集。然后使用`TfidfVectorizer`对文本进行特征提取,并使用`MultinomialNB`训练和预测模型。最后输出模型的准确率。以下是修改后的代码:
```
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
filename = 'D:/111/20news-18828.tar/20newsgroups.srv'
with open(filename, 'r', encoding='UTF-8') as file:
A = file.readlines()
data = []
for line in A:
category, text = line.split('\t')
data.append((category, text))
df = pd.DataFrame(data, columns=['category', 'text'])
# 分割数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df['text'], df['category'], random_state=42)
# 对文本进行特征提取
tfidf = TfidfVectorizer(stop_words='english')
X_train_tfidf = tfidf.fit_transform(X_train.astype(str))
X_test_tfidf = tfidf.transform(X_test.astype(str))
# 使用多项式朴素贝叶斯模型进行训练和预测
clf = MultinomialNB()
clf.fit(X_train_tfidf, y_train)
y_pred = clf.predict(X_test_tfidf)
# 输出模型的准确率
print('Accuracy:', accuracy_score(y_test, y_pred))
```
阅读全文