Java的spark mllib如何在加载随机森林模型时设置参数
时间: 2023-12-13 15:02:31 浏览: 88
在 Java 版本的 Spark MLlib 中,加载随机森林模型与加载决策树模型类似,也可以通过 `MLReader` 类的 `load` 方法加载模型,并设置加载模型时的参数。具体的代码示例如下:
```java
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.util.MLReader;
// 模型保存路径
String modelPath = "path/to/your/model";
// 加载模型,并设置参数
PipelineModel model = new MLReader<PipelineModel>() {
@Override
public PipelineModel load(String path) {
Metadata metadata = readMetadata(path);
PipelineModel model = new PipelineModel(metadata.uid(), stages().map(Reader$.MODULE$::load).toArray(Reader[]::new));
DefaultParamsReader$.MODULE$.getAndSetParams(model, metadata);
return model;
}
}.load(modelPath, params);
```
其中,`params` 参数是一个 `Map<String, String>` 类型的参数,用于设置加载模型时的参数。对于随机森林模型,需要设置的参数包括:
- `numTrees`:随机森林模型中树的数量。
- `featureSubsetStrategy`:随机森林模型中特征选择的策略。可以设置为 "auto"、"all"、"sqrt"、"log2" 或具体的数字。
例如,如果要设置加载模型时的随机森林模型树的数量为 100,特征选择策略为 "auto",可以通过以下方式设置参数:
```java
Map<String, String> params = new HashMap<>();
params.put("randomForest.numTrees", "100");
params.put("randomForest.featureSubsetStrategy", "auto");
```
需要注意的是,参数的命名需要与模型训练时使用的参数保持一致。
阅读全文