解释一下BATCH_SIZE = 100 SEQ_SIZE = 1 learning_rate = 0.0001 PATH_SAVE = './model/convGRU_model.t7' os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
时间: 2023-06-08 14:08:21 浏览: 168
BATCH_SIZE = 100表示每次训练时输入的数据集大小为100,SEQ_SIZE = 1表示输入数据序列的长度为1,learning_rate = 0.0001表示学习率,即控制参数更新的速率,在每次迭代中会对参数进行微调,PATH_SAVE = './model/convGRU_model.t7'表示模型训练完后保存的路径,os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"表示使用GPU进行训练,其中"0,1"表示使用多个GPU进行并行计算。只有遵守隐私规则并妥善保管您的隐私才能确保您的数据安全。
相关问题
BATCH_SIZE = 100 SEQ_SIZE = 16 learning_rate = 0.0001
这似乎是一些神经网络训练的参数设置。BATCH_SIZE 表示每个训练批次的样本数量,SEQ_SIZE 表示输入序列的长度,learning_rate 表示学习率,即每次更新权重的步长大小。这些参数的具体值需要根据具体应用场景进行调整。
# 最佳权重保存路径 BEST_MODEL_PATH = './best_model.h5'
好的,你可以将最佳权重保存路径添加到代码中,如下所示:
```python
import numpy as np
import tensorflow as tf
import os
# 加载数据集
with open('poems.txt', 'r', encoding='utf-8') as f:
data = f.read()
# 构建词典
vocab = sorted(set(data))
char2idx = {char: idx for idx, char in enumerate(vocab)}
idx2char = np.array(vocab)
# 将文本数据转换为数字
text_as_int = np.array([char2idx[c] for c in data])
# 定义训练数据和标签
seq_length = 100
examples_per_epoch = len(data) // (seq_length + 1)
char_dataset = tf.data.Dataset.from_tensor_slices(text_as_int)
sequences = char_dataset.batch(seq_length + 1, drop_remainder=True)
def split_input_target(chunk):
input_text = chunk[:-1]
target_text = chunk[1:]
return input_text, target_text
dataset = sequences.map(split_input_target)
BATCH_SIZE = 128
BUFFER_SIZE = 10000
dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True)
# 构建模型
vocab_size = len(vocab)
embedding_dim = 256
rnn_units = 1024
def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
model = tf.keras.Sequential([
tf.keras.layers.Embedding(vocab_size, embedding_dim,
batch_input_shape=[batch_size, None]),
tf.keras.layers.GRU(rnn_units,
return_sequences=True,
stateful=True,
recurrent_initializer='glorot_uniform'),
tf.keras.layers.Dense(vocab_size)
])
return model
model = build_model(
vocab_size=len(vocab),
embedding_dim=embedding_dim,
rnn_units=rnn_units,
batch_size=BATCH_SIZE)
# 定义损失函数
def loss(labels, logits):
return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True)
# 编译模型
model.compile(optimizer='adam', loss=loss)
# 定义检查点
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")
checkpoint_callback=tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_prefix,
save_weights_only=True)
# 定义最佳权重检查点
BEST_MODEL_PATH = './best_model.h5'
best_checkpoint = tf.keras.callbacks.ModelCheckpoint(BEST_MODEL_PATH,
monitor='val_loss',
save_best_only=True,
mode='min',
save_weights_only=True)
# 训练模型
EPOCHS = 50
history = model.fit(dataset, epochs=EPOCHS, callbacks=[checkpoint_callback, best_checkpoint])
# 生成诗歌
def generate_text(model, start_string):
num_generate = 100
input_eval = [char2idx[s] for s in start_string]
input_eval = tf.expand_dims(input_eval, 0)
text_generated = []
temperature = 1.0
model.reset_states()
for i in range(num_generate):
predictions = model(input_eval)
predictions = tf.squeeze(predictions, 0)
predictions = predictions / temperature
predicted_id = tf.random.categorical(predictions, num_samples=1)[-1,0].numpy()
input_eval = tf.expand_dims([predicted_id], 0)
text_generated.append(idx2char[predicted_id])
return (start_string + ''.join(text_generated))
# 加载检查点
model = build_model(vocab_size, embedding_dim, rnn_units, batch_size=1)
model.load_weights(BEST_MODEL_PATH)
model.build(tf.TensorShape([1, None]))
# 生成一首诗
print(generate_text(model, start_string=u"山中"))
```
现在,模型将保存最佳的权重到文件 `best_model.h5`。
阅读全文