解释一下BATCH_SIZE = 100 SEQ_SIZE = 1 learning_rate = 0.0001 PATH_SAVE = './model/convGRU_model.t7' os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
时间: 2023-06-08 14:08:21 浏览: 182
BATCH_SIZE = 100表示每次训练时输入的数据集大小为100,SEQ_SIZE = 1表示输入数据序列的长度为1,learning_rate = 0.0001表示学习率,即控制参数更新的速率,在每次迭代中会对参数进行微调,PATH_SAVE = './model/convGRU_model.t7'表示模型训练完后保存的路径,os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"表示使用GPU进行训练,其中"0,1"表示使用多个GPU进行并行计算。只有遵守隐私规则并妥善保管您的隐私才能确保您的数据安全。
相关问题
net = LeNet5() paddle.summary(net,(-1,1,img_size,img_size)) from paddle.metric import Accuracy save_dir = "model/lenet_2" epoch = 5 lr = 0.01 weight_decay = 5e-4 batch_size = 64 model = paddle.Model(net) optim = paddle.optimizer.Adam(learning_rate=lr,parameter=model.parameters(),weight_decay=weight_decay) model.prepare(optim,paddle.nn.CrossEntropyloss(),paddle.nn.Accuracy()) model.fit(train_dataset,epochs=epoch,batch_size=batch_size,save_dir=save_dir,verbose=1) best_model_path = "model/lenet_2/final.pdparams" net = LeNet5() model = paddle.Model(net) model.load(best_model_path) model.prepare(optim,paddle.nn.CrossEntropyloss(),Accuracy()) results = model.evaluate(test_dataset,batch_size=batch_size,verbose=1) print(results)在pytorch中如何表示
在 PyTorch 中,上述代码可以表示为:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
class LeNet5(nn.Module):
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool2 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool1(torch.relu(self.conv1(x)))
x = self.pool2(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
train_dataset = # 加载训练数据集
test_dataset = # 加载测试数据集
batch_size = 64
epoch = 5
lr = 0.01
weight_decay = 5e-4
save_dir = "model/lenet_2"
best_model_path = "model/lenet_2/final.pt"
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = LeNet5().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=lr, weight_decay=weight_decay)
# 训练模型
for epoch in range(epoch):
net.train()
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}, loss: {running_loss/len(train_loader):.4f}")
torch.save(net.state_dict(), best_model_path)
# 测试模型
net.load_state_dict(torch.load(best_model_path))
net.eval()
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = correct / total
print(f"Accuracy on test set: {accuracy:.4f}")
```
这段代码中加一个test loss功能 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(65536, self.output_size) def forward(self, input_seq): h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output.contiguous().view(self.batch_size, -1)) return pred if __name__ == '__main__': # 加载已保存的模型参数 saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth' device = 'cuda:0' lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device='cuda:0').to(device) state_dict = torch.load(saved_model_path) lstm_model.load_state_dict(state_dict) dataset = ECGDataset(X_train_df.to_numpy()) dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=0, drop_last=True) loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4) for epoch in range(200000): print(f'epoch:{epoch}') lstm_model.train() epoch_bar = tqdm(dataloader) for x, y in epoch_bar: optimizer.zero_grad() x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor)) loss = loss_fn(x_out, y.long().to(device)) loss.backward() epoch_bar.set_description(f'loss:{loss.item():.4f}') optimizer.step() if epoch % 100 == 0 or epoch == epoch - 1: torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth") print("权重成功保存一次")
以下是加入 Test Loss 功能后的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device):
super().__init__()
self.device = device
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.num_directions = 1 # 单向LSTM
self.batch_size = batch_size
self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)
self.linear = nn.Linear(65536, self.output_size)
def forward(self, input_seq):
h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device)
c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device)
output, _ = self.lstm(input_seq, (h_0, c_0))
pred = self.linear(output.contiguous().view(self.batch_size, -1))
return pred
if __name__ == '__main__':
# 加载已保存的模型参数
saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth'
device = 'cuda:0'
lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device=device).to(device)
state_dict = torch.load(saved_model_path)
lstm_model.load_state_dict(state_dict)
# 加载测试数据集
test_dataset = ECGDataset(X_test_df.to_numpy())
test_loader = DataLoader(test_dataset, batch_size=256, shuffle=False, num_workers=0, drop_last=False)
# 定义损失函数和优化器
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4)
# 开始训练
for epoch in range(200000):
print(f'epoch:{epoch}')
lstm_model.train()
epoch_bar = tqdm(dataloader)
for x, y in epoch_bar:
optimizer.zero_grad()
x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor))
loss = loss_fn(x_out, y.long().to(device))
loss.backward()
epoch_bar.set_description(f'loss:{loss.item():.4f}')
optimizer.step()
# 计算测试集上的平均损失
test_loss = 0.0
lstm_model.eval()
with torch.no_grad():
for x, y in test_loader:
x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor))
loss = loss_fn(x_out, y.long().to(device))
test_loss += loss.item() * x.size(0)
test_loss /= len(test_dataset)
print(f'Test Loss: {test_loss:.4f}')
if epoch % 100 == 0 or epoch == epoch - 1:
torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth")
print("权重成功保存一次")
```
在这个代码中,我们首先加载了测试数据集 `test_dataset` 和测试数据加载器 `test_loader`。在每个 epoch 完成后,我们计算测试集上的平均损失值。我们使用 `lstm_model.eval()` 将模型设为评估模式,并利用 `torch.no_grad()` 避免计算梯度,以加速计算。最后,我们输出测试集上的平均损失值。
阅读全文
相关推荐














