决策树分类python代码_分类算法-决策树 Decision Tree

时间: 2023-11-27 11:03:27 浏览: 65
以下是一个简单的决策树分类的Python代码示例: ``` from sklearn import tree # 定义特征和标签 features = [[140, 1], [130, 1], [150, 0], [170, 0]] labels = [0, 0, 1, 1] # 训练决策树模型 clf = tree.DecisionTreeClassifier() clf = clf.fit(features, labels) # 预测新数据 print(clf.predict([[160, 0]])) ``` 这个代码示例中,我们定义了一个由两个特征组成的数据集和对应的标签。然后使用Scikit-learn库中的DecisionTreeClassifier类来训练决策树模型,并用训练好的模型预测新数据。在这个例子中,我们预测一个重量为160克、颜色为红的水果是什么类型。输出结果为1,表示这是一个橙子。
相关问题

python决策树算法代码_决策树的Python实现(含代码)

下面是一份使用Python实现决策树算法的代码: ```python import numpy as np def entropy(y): """计算熵""" _, counts = np.unique(y, return_counts=True) p = counts / len(y) return -np.sum(p * np.log2(p)) class DecisionTree: def __init__(self, max_depth=None): self.max_depth = max_depth def fit(self, X, y): self.n_features_ = X.shape[1] self.tree_ = self._grow_tree(X, y) def predict(self, X): return [self._predict(inputs) for inputs in X] def _best_split(self, X, y): """找到最好的特征和分割点""" m = y.size if m <= 1: return None, None num_parent = [np.sum(y == c) for c in range(self.n_classes_)] best_gini = 1.0 - sum((n / m) ** 2 for n in num_parent) best_idx, best_thr = None, None for idx in range(self.n_features_): thresholds, classes = zip(*sorted(zip(X[:, idx], y))) num_left = [0] * self.n_classes_ num_right = num_parent.copy() for i in range(1, m): c = classes[i - 1] num_left[c] += 1 num_right[c] -= 1 gini_left = 1.0 - sum((num_left[x] / i) ** 2 for x in range(self.n_classes_)) gini_right = 1.0 - sum((num_right[x] / (m - i)) ** 2 for x in range(self.n_classes_)) gini = (i * gini_left + (m - i) * gini_right) / m if thresholds[i] == thresholds[i - 1]: continue if gini < best_gini: best_gini = gini best_idx = idx best_thr = (thresholds[i] + thresholds[i - 1]) / 2 return best_idx, best_thr def _grow_tree(self, X, y, depth=0): """递归地构建决策树""" num_samples_per_class = [np.sum(y == i) for i in range(self.n_classes_)] predicted_class = np.argmax(num_samples_per_class) node = Node( predicted_class=predicted_class, num_samples=len(y), num_samples_per_class=num_samples_per_class, ) # 停止递归条件 if ( depth < self.max_depth and np.unique(y).size > 1 and X.shape[0] > self.min_samples_split ): idx, thr = self._best_split(X, y) if idx is not None: indices_left = X[:, idx] < thr X_left, y_left = X[indices_left], y[indices_left] X_right, y_right = X[~indices_left], y[~indices_left] node.feature_index = idx node.threshold = thr node.left = self._grow_tree(X_left, y_left, depth + 1) node.right = self._grow_tree(X_right, y_right, depth + 1) return node def _predict(self, inputs): """预测一个样本""" node = self.tree_ while node.left: if inputs[node.feature_index] < node.threshold: node = node.left else: node = node.right return node.predicted_class class Node: def __init__(self, *, predicted_class, num_samples, num_samples_per_class): self.predicted_class = predicted_class self.num_samples = num_samples self.num_samples_per_class = num_samples_per_class self.feature_index = 0 self.threshold = 0 self.left = None self.right = None ``` 这份代码实现了基于 Gini 系数的分类决策树算法。其中 `max_depth` 参数表示树的最大深度,`min_samples_split` 参数表示一个节点至少需要包含多少个样本才能进行分裂。使用时,可以按照下面的方式实例化并调用: ```python clf = DecisionTree(max_depth=3) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) ``` 其中 `X_train` 和 `y_train` 分别表示训练集的特征和标签,`X_test` 表示测试集的特征。

id3决策树 鸢尾花 python_C4.5决策树Python代码实现

id3决策树 鸢尾花 Python代码实现: ```python import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split class Node: def __init__(self, feature=None, target=None, left=None, right=None): self.feature = feature # 划分数据集的特征 self.target = target # 叶子节点的类别 self.left = left # 左子节点 self.right = right # 右子节点 class ID3DecisionTree: def __init__(self): self.tree = None # 决策树 # 计算信息熵 def _entropy(self, y): labels = np.unique(y) probs = [np.sum(y == label) / len(y) for label in labels] return -np.sum([p * np.log2(p) for p in probs]) # 计算条件熵 def _conditional_entropy(self, X, y, feature): feature_values = np.unique(X[:, feature]) probs = [np.sum(X[:, feature] == value) / len(X) for value in feature_values] entropies = [self._entropy(y[X[:, feature] == value]) for value in feature_values] return np.sum([p * e for p, e in zip(probs, entropies)]) # 选择最优特征 def _select_feature(self, X, y): n_features = X.shape[1] entropies = [self._conditional_entropy(X, y, feature) for feature in range(n_features)] return np.argmin(entropies) # 构建决策树 def _build_tree(self, X, y): if len(np.unique(y)) == 1: # 叶子节点,返回类别 return Node(target=y[0]) if X.shape[1] == 0: # 叶子节点,返回出现次数最多的类别 target = np.argmax(np.bincount(y)) return Node(target=target) feature = self._select_feature(X, y) # 选择最优特征 feature_values = np.unique(X[:, feature]) left_indices = [i for i in range(len(X)) if X[i][feature] == feature_values[0]] right_indices = [i for i in range(len(X)) if X[i][feature] == feature_values[1]] left = self._build_tree(X[left_indices], y[left_indices]) # 递归构建左子树 right = self._build_tree(X[right_indices], y[right_indices]) # 递归构建右子树 return Node(feature=feature, left=left, right=right) # 训练决策树 def fit(self, X, y): self.tree = self._build_tree(X, y) # 预测单个样本 def _predict_sample(self, x): node = self.tree while node.target is None: if x[node.feature] == np.unique(X[:, node.feature])[0]: node = node.left else: node = node.right return node.target # 预测多个样本 def predict(self, X): return np.array([self._predict_sample(x) for x in X]) # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 划分数据集 train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=1) # 训练模型 model = ID3DecisionTree() model.fit(train_X, train_y) # 预测测试集 pred_y = model.predict(test_X) # 计算准确率 accuracy = np.sum(pred_y == test_y) / len(test_y) print('Accuracy:', accuracy) ``` C4.5决策树 Python代码实现: ```python import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split class Node: def __init__(self, feature=None, threshold=None, target=None, left=None, right=None): self.feature = feature # 划分数据集的特征 self.threshold = threshold # 划分数据集的阈值 self.target = target # 叶子节点的类别 self.left = left # 左子节点 self.right = right # 右子节点 class C45DecisionTree: def __init__(self, min_samples_split=2, min_gain_ratio=1e-4): self.min_samples_split = min_samples_split # 最小划分样本数 self.min_gain_ratio = min_gain_ratio # 最小增益比 self.tree = None # 决策树 # 计算信息熵 def _entropy(self, y): labels = np.unique(y) probs = [np.sum(y == label) / len(y) for label in labels] return -np.sum([p * np.log2(p) for p in probs]) # 计算条件熵 def _conditional_entropy(self, X, y, feature, threshold): left_indices = X[:, feature] <= threshold right_indices = X[:, feature] > threshold left_probs = np.sum(left_indices) / len(X) right_probs = np.sum(right_indices) / len(X) entropies = [self._entropy(y[left_indices]), self._entropy(y[right_indices])] return np.sum([p * e for p, e in zip([left_probs, right_probs], entropies)]) # 计算信息增益 def _information_gain(self, X, y, feature, threshold): entropy = self._entropy(y) conditional_entropy = self._conditional_entropy(X, y, feature, threshold) return entropy - conditional_entropy # 计算信息增益比 def _gain_ratio(self, X, y, feature, threshold): entropy = self._entropy(y) conditional_entropy = self._conditional_entropy(X, y, feature, threshold) split_info = -np.sum([p * np.log2(p) for p in [np.sum(X[:, feature] <= threshold) / len(X), np.sum(X[:, feature] > threshold) / len(X)]]) return (entropy - conditional_entropy) / split_info if split_info != 0 else 0 # 选择最优特征和划分阈值 def _select_feature_and_threshold(self, X, y): n_features = X.shape[1] max_gain_ratio = -1 best_feature, best_threshold = None, None for feature in range(n_features): thresholds = np.unique(X[:, feature]) for threshold in thresholds: if len(y[X[:, feature] <= threshold]) >= self.min_samples_split and len(y[X[:, feature] > threshold]) >= self.min_samples_split: gain_ratio = self._gain_ratio(X, y, feature, threshold) if gain_ratio > max_gain_ratio: max_gain_ratio = gain_ratio best_feature = feature best_threshold = threshold return best_feature, best_threshold # 构建决策树 def _build_tree(self, X, y): if len(np.unique(y)) == 1: # 叶子节点,返回类别 return Node(target=y[0]) if X.shape[1] == 0: # 叶子节点,返回出现次数最多的类别 target = np.argmax(np.bincount(y)) return Node(target=target) feature, threshold = self._select_feature_and_threshold(X, y) # 选择最优特征和划分阈值 if feature is None or threshold is None: # 叶子节点,返回出现次数最多的类别 target = np.argmax(np.bincount(y)) return Node(target=target) left_indices = X[:, feature] <= threshold right_indices = X[:, feature] > threshold left = self._build_tree(X[left_indices], y[left_indices]) # 递归构建左子树 right = self._build_tree(X[right_indices], y[right_indices]) # 递归构建右子树 return Node(feature=feature, threshold=threshold, left=left, right=right) # 训练决策树 def fit(self, X, y): self.tree = self._build_tree(X, y) # 预测单个样本 def _predict_sample(self, x): node = self.tree while node.target is None: if x[node.feature] <= node.threshold: node = node.left else: node = node.right return node.target # 预测多个样本 def predict(self, X): return np.array([self._predict_sample(x) for x in X]) # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 划分数据集 train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=1) # 训练模型 model = C45DecisionTree(min_samples_split=5) model.fit(train_X, train_y) # 预测测试集 pred_y = model.predict(test_X) # 计算准确率 accuracy = np.sum(pred_y == test_y) / len(test_y) print('Accuracy:', accuracy) ```

相关推荐

最新推荐

recommend-type

Python使用sklearn库实现的各种分类算法简单应用小结

本文将简要介绍如何使用`sklearn`库实现KNN、SVM、逻辑回归(LR)、决策树、随机森林以及梯度提升决策树(GBDT)等分类算法,并提供相应的代码示例。 1. **K近邻(K-Nearest Neighbors, KNN)** KNN是一种基于实例...
recommend-type

cryptography-0.9-cp34-none-win32.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

antdpro Demo

antdpro Demo
recommend-type

基于联盟链的农药溯源系统论文.doc

随着信息技术的飞速发展,电子商务已成为现代社会的重要组成部分,尤其在移动互联网普及的背景下,消费者的购物习惯发生了显著变化。为了提供更高效、透明和安全的农产品交易体验,本论文探讨了一种基于联盟链的农药溯源系统的设计与实现。 论文标题《基于联盟链的农药溯源系统》聚焦于利用区块链技术,特别是联盟链,来构建一个针对农产品销售的可信赖平台。联盟链的优势在于它允许特定参与方(如生产商、零售商和监管机构)在一个共同维护的网络中协作,确保信息的完整性和数据安全性,同时避免了集中式数据库可能面临的隐私泄露问题。 系统开发采用Java语言作为主要编程语言,这是因为Java以其稳定、跨平台的特性,适用于构建大型、复杂的企业级应用。Spring Boot框架在此过程中起到了关键作用,它提供了快速开发、模块化和轻量级的特点,极大地简化了项目的搭建和维护。 数据库选择MySQL,因其广泛应用于企业级应用且性能良好,能够支持大规模的数据处理和查询。系统设计分为前台和后台两大部分。前台界面面向普通用户,提供一系列功能,如用户注册和登录、查看农产品信息、查看公告、添加商品到购物车以及结算和管理订单。这些功能旨在提升用户体验,使消费者能够便捷地获取农产品信息并完成购买。 后台则主要服务于管理员,包括用户管理、农产品分类管理、基础信息管理(如农药信息)、订单管理和公告管理等。这些功能确保了信息的准确记录和管理,同时也支持对系统的有效运维。 关键词"农产品"、"农药"、"溯源"、"SpringBoot框架"和"MySQL"强调了论文的核心研究内容,即通过联盟链技术强化农产品的全程追溯能力,确保食品安全,提高消费者信任度,同时展示了所用的技术栈和平台选择。 这篇论文不仅探讨了在当前电商环境下如何利用区块链技术改进农药溯源系统,还深入剖析了其实现过程和关键组件,为农产品供应链的透明化和信息化提供了一个实用的解决方案。这样的系统在保障消费者权益、推动绿色农业发展等方面具有重要意义。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python代码雨与可维护性:保持代码清晰易维护,避免代码雨困扰

![Python代码雨与可维护性:保持代码清晰易维护,避免代码雨困扰](https://img-blog.csdnimg.cn/769c66afbeac442ca7b77161762c73a4.png) # 1. Python代码雨的概念 ### 1.1 代码雨的定义和危害 代码雨是指在Python代码中出现大量重复、冗余和难以维护的代码片段。它会对代码的可读性、可维护性和可扩展性产生严重影响。 ### 1.2 导致代码雨的常见原因 * **缺乏模块化和封装:**代码没有被合理地组织成模块和类,导致代码分散且难以管理。 * **命名不规范和注释不足:**变量、函数和类的命名不一致或不直
recommend-type

编写代码,实现seq2seq结构中的编码器和解码器。

编写代码实现seq2seq结构中的编码器和解码器,需要先了解seq2seq模型的基本原理。seq2seq模型包含编码器和解码器两个部分,其中编码器将输入序列映射为固定长度的向量表示,而解码器则使用该向量表示来生成输出序列。以下是实现seq2seq结构中的编码器和解码器的基本步骤: 1. 编写编码器的代码:编码器通常由多个循环神经网络(RNN)层组成,可以使用LSTM或GRU等。输入序列经过每个RNN层后,最后一个RNN层的输出作为整个输入序列的向量表示。编码器的代码需要实现RNN层的前向传播和反向传播。 2. 编写解码器的代码:解码器通常也由多个RNN层组成,与编码器不同的是,解码器在每个
recommend-type

基于Python的猫狗宠物展示系统.doc

随着科技的进步和人们生活质量的提升,宠物已经成为现代生活中的重要组成部分,尤其在中国,宠物市场的需求日益增长。基于这一背景,"基于Python的猫狗宠物展示系统"应运而生,旨在提供一个全方位、便捷的在线平台,以满足宠物主人在寻找宠物服务、预订住宿和旅行时的需求。 该系统的核心开发技术是Python,这门强大的脚本语言以其简洁、高效和易读的特性被广泛应用于Web开发。Python的选择使得系统具有高度可维护性和灵活性,能够快速响应和处理大量数据,从而实现对宠物信息的高效管理和操作。 系统设计采用了模块化的架构,包括用户和管理员两个主要角色。用户端功能丰富多样,包括用户注册与登录、宠物百科、宠物信息查询(如品种、健康状况等)、宠物医疗咨询、食品推荐以及公告通知等。这些功能旨在为普通宠物主人提供一站式的宠物生活服务,让他们在享受养宠乐趣的同时,能够方便快捷地获取所需信息和服务。 后台管理模块则更为专业和严谨,涵盖了系统首页、个人中心、用户管理、宠物信息管理(包括新品种添加和更新)、宠物申领流程、医疗预约、食品采购和管理系统维护等多个方面。这些功能使得管理员能够更好地组织和监管平台内容,确保信息的准确性和实时性。 数据库方面,系统选择了MySQL,作为轻量级但功能强大的关系型数据库,它能有效存储和管理大量的宠物信息数据,支持高效的数据查询和处理,对于复杂的数据分析和报表生成提供了可靠的基础。 这个基于Python的猫狗宠物展示系统不仅解决了宠物主人在出行和日常照顾宠物时的信息查找难题,还提升了宠物行业的数字化管理水平。它的实施将推动宠物服务行业向着更智能化、个性化方向发展,极大地提高了宠物主人的生活质量,也为企业和个人提供了新的商业机会。关键词“宠物”、“管理”、“MySQL”和“Python”恰当地概括了该系统的主题和核心技术,突显了其在现代宠物行业中的重要地位。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Python代码雨与可扩展性:设计和实现可扩展代码,应对业务增长

![Python代码雨与可扩展性:设计和实现可扩展代码,应对业务增长](https://ths.js.org/2021/04/06/%E5%89%8D%E7%AB%AF%E5%8D%95%E5%85%83%E6%B5%8B%E8%AF%95/%E4%BA%A7%E5%93%81%E7%A0%94%E5%8F%91%E6%B5%81%E7%A8%8B.jpg) # 1. Python代码可扩展性的基础** Python代码的可扩展性是指代码能够随着需求的变化而轻松地适应和扩展。可扩展性对于构建可维护、可扩展和可适应不断变化的环境的应用程序至关重要。 **可扩展性的好处** * **减少维护